[
Agrawal, A., Fu, W., & Menzies, T. (2018). What is wrong with topic modelling? And how to fix it using search-based software engineering. Information and Software Technology, 98, 74-88.
]Search in Google Scholar
[
Albanese, F., & Feuerstein, E. (2021). Improved topic modelling in twitter through community pooling. In String Processing and Information Retrieval: 28th International Symposium, SPIRE 2021, Lille, France, October 4–6, 2021, Proceedings 28 (pp. 209-216). Springer International Publishing.
]Search in Google Scholar
[
Alfred, V. A., Monica, S. L., & Jeffrey, D. U. (2007). Compilers principles, techniques & tools. pearson Education.
]Search in Google Scholar
[
Athiwaratkun, B., Wilson, A. G., & Anandkumar, A. (2018). Probabilistic fasttext for multi-sense word embeddings. arXiv preprint arXiv:1806.02901.
]Search in Google Scholar
[
Barriere, V., & Balahur, A. (2020). Improving sentiment analysis over non-English tweets using multilingual transformers and automatic translation for data-augmentation. arXiv preprint arXiv:2010.03486.
]Search in Google Scholar
[
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676.
]Search in Google Scholar
[
Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77-84.
]Search in Google Scholar
[
Blei, D., & Lafferty, J. (2006). Correlated topic models. Advances in neural information processing systems, 18, 147.
]Search in Google Scholar
[
Bochinski, E., Senst, T., & Sikora, T. (2017). Hyper-parameter optimization for convolutional neural network committees based on evolutionary algorithms. In 2017 IEEE international conference on image processing (ICIP) (pp. 3924-3928). IEEE.
]Search in Google Scholar
[
Boyd-Graber, J., & Blei, D. (2008). Syntactic topic models. Advances in neural information processing systems, 21.
]Search in Google Scholar
[
Briciu, A., Călin, A. D., Miholca, D. L., Moroz-Dubenco, C., Petrașcu, V., & Dascălu, G. (2024). Machine-Learning-Based Approaches for Multi-Level Sentiment Analysis of Romanian Reviews. Mathematics, 12(3), 456.
]Search in Google Scholar
[
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
]Search in Google Scholar
[
Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., & Androutsopoulos, I. (2020). LEGAL-BERT: The muppets straight out of law school. arXiv preprint arXiv:2010.02559.
]Search in Google Scholar
[
Cheng, X., Yan, X., Lan, Y., & Guo, J. (2014). Btm: Topic modeling over short texts. IEEE Transactions on Knowledge and Data Engineering, 26(12), 2928-2941.
]Search in Google Scholar
[
Ciobotaru, A., & Dinu, L. P. (2023). SART & COVIDSentiRo: Datasets for Sentiment Analysis Applied to Analyzing COVID-19 Vaccination Perception in Romanian Tweets. Procedia Computer Science, 225, 1331-1339.
]Search in Google Scholar
[
Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., ... & Stoyanov, V. (2019). Unsupervised cross-lingual representation learning at scale. arXiv preprint arXiv:1911.02116.
]Search in Google Scholar
[
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers) (pp. 4171-4186).
]Search in Google Scholar
[
Dimitrov, D., Baran, E., Fafalios, P., Yu, R., Zhu, X., Zloch, M., & Dietze, S. (2020). Tweetscov19-a knowledge base of semantically annotated tweets about the covid-19 pandemic. In Proceedings of the 29th ACM international conference on information & knowledge management (pp. 2991-2998).
]Search in Google Scholar
[
Dingliwal, S., Shenoy, A., Bodapati, S., Gandhe, A., Gadde, R. T., & Kirchhoff, K. (2021). Prompt Tuning GPT-2 language model for parameter-efficient domain adaptation of ASR systems. arXiv preprint arXiv:2112.08718.
]Search in Google Scholar
[
Dumitrescu, S. D., Avram, A. M., & Pyysalo, S. (2020). The birth of Romanian BERT. arXiv preprint arXiv:2009.08712.
]Search in Google Scholar
[
Eisenstein, J. (2013). What to do about bad language on the internet. In Proceedings of the 2013 conference of the North American Chapter of the association for computational linguistics: Human language technologies (pp. 359-369).
]Search in Google Scholar
[
Erlingsson, Ú., Feldman, V., Mironov, I., Raghunathan, A., Talwar, K., & Thakurta, A. (2019). Amplification by shuffling: From local to central differential privacy via anonymity. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 2468-2479). Society for Industrial and Applied Mathematics.
]Search in Google Scholar
[
Gage, P. (1994). A new algorithm for data compression. The C Users Journal, 12(2), 23-38.
]Search in Google Scholar
[
Ganganwar, V. (2012). An overview of classification algorithms for imbalanced datasets. International Journal of Emerging Technology and Advanced Engineering, 2(4), 42-47.
]Search in Google Scholar
[
Gentzkow, M., Kelly, B., & Taddy, M. (2019). Text as data. Journal of Economic Literature, 57(3), 535-574.
]Search in Google Scholar
[
Goldberg, Y., & Levy, O. (2014). word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722.
]Search in Google Scholar
[
Gupta, M. R., Bengio, S., & Weston, J. (2014). Training highly multiclass classifiers. The Journal of Machine Learning Research, 15(1), 1461-1492.
]Search in Google Scholar
[
Hamborg, F., Donnay, K., & Merlo, P. (2021). NewsMTSC: a dataset for (multi-) target-dependent sentiment classification in political news articles. Association for Computational Linguistics (ACL).
]Search in Google Scholar
[
He, P., Liu, X., Gao, J., & Chen, W. (2020). Deberta: Decoding-enhanced bert with disentangled attention. arXiv preprint arXiv:2006.03654.
]Search in Google Scholar
[
Ho, V. A., Nguyen, D. H. C., Nguyen, D. H., Pham, L. T. V., Nguyen, D. V., Nguyen, K. V., & Nguyen, N. L. T. (2020). Emotion recognition for vietnamese social media text. In Computational Linguistics: 16th International Conference of the Pacific Association for Computational Linguistics, PACLING 2019, Hanoi, Vietnam, October 11–13, 2019, Revised Selected Papers 16 (pp. 319-333). Springer Singapore.
]Search in Google Scholar
[
Hong, L., & Davison, B. D. (2010). Empirical study of topic modeling in twitter. In Proceedings of the first workshop on social media analytics (pp. 80-88).
]Search in Google Scholar
[
Istrati, L., & Ciobotaru, A. (2022). Automatic monitoring and analysis of brands using data extracted from twitter in Romanian. In Intelligent Systems and Applications: Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 3 (pp. 55-75). Springer International Publishing.
]Search in Google Scholar
[
Izsak, P., Berchansky, M., & Levy, O. (2021). How to train BERT with an academic budget. arXiv preprint arXiv:2104.07705.
]Search in Google Scholar
[
Lee, K., Palsetia, D., Narayanan, R., Patwary, M. M. A., Agrawal, A., & Choudhary, A. (2011). Twitter trending topic classification. In 2011 IEEE 11th international conference on data mining workshops (pp. 251-258). IEEE.
]Search in Google Scholar
[
Leskovec, J., Rajaraman, A., & Ullman, J. D. (2020). Mining of massive data sets. Cambridge university press.
]Search in Google Scholar
[
Levine, Y., Lenz, B., Lieber, O., Abend, O., Leyton-Brown, K., Tennenholtz, M., & Shoham, Y. (2020). Pmi-masking: Principled masking of correlated spans. arXiv preprint arXiv:2010.01825.
]Search in Google Scholar
[
Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal, M., & Raffel, C. A. (2022). Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learning. Advances in Neural Information Processing Systems, 35, 1950-1965.
]Search in Google Scholar
[
Liu, X., He, P., Chen, W., & Gao, J. (2019). Improving multi-task deep neural networks via knowledge distillation for natural language understanding. arXiv preprint arXiv:1904.09482.
]Search in Google Scholar
[
Masala, M., Ruseti, S., & Dascalu, M. (2020). Robert–a romanian bert model. In Proceedings of the 28th International Conference on Computational Linguistics (pp. 6626-6637).
]Search in Google Scholar
[
Mori, N., Takeda, M., & Matsumoto, K. (2005). A comparison study between genetic algorithms and bayesian optimize algorithms by novel indices. In Proceedings of the 7th annual conference on Genetic and evolutionary computation (pp. 1485-1492).
]Search in Google Scholar
[
Neagu, D. C., Rus, A. B., Grec, M., Boroianu, M. A., Bogdan, N., & Gal, A. (2022). Towards sentiment analysis for romanian twitter content. Algorithms, 15(10), 357.
]Search in Google Scholar
[
Neagu, D. C., Rus, A. B., Grec, M., Boroianu, M., & Silaghi, G. C. (2022). Topic Classification for Short Texts. In International Conference on Information Systems Development (pp. 207-222). Cham: Springer International Publishing.
]Search in Google Scholar
[
Nguyen, D. Q., Vu, T., & Nguyen, A. T. (2020). BERTweet: A pre-trained language model for English Tweets. arXiv preprint arXiv:2005.10200.
]Search in Google Scholar
[
Oh, S. (2017). Top-k hierarchical classification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 31, No. 1).
]Search in Google Scholar
[
Ojha, V. K., Abraham, A., & Snášel, V. (2017). Metaheuristic design of feedforward neural networks: A review of two decades of research. Engineering Applications of Artificial Intelligence, 60, 97-116.
]Search in Google Scholar
[
Paaß, G., & Giesselbach, S. (2023). Pre-trained Language Models. In Foundation Models for Natural Language Processing: Pre-trained Language Models Integrating Media (pp. 19-78). Cham: Springer International Publishing.
]Search in Google Scholar
[
Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). A survey of optimization by building and using probabilistic models. Computational optimization and applications, 21, 5-20.
]Search in Google Scholar
[
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.
]Search in Google Scholar
[
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine learning research, 21(140), 1-67.
]Search in Google Scholar
[
Rahman, M. A., & Akter, Y. A. (2019). Topic classification from text using decision tree, K-NN and multinomial naïve bayes. In 2019 1st international conference on advances in science, engineering and robotics technology (ICASERT) (pp. 1-4). IEEE.
]Search in Google Scholar
[
Raschka, S. (2021). Model evaluation, model selection, and algorithm selection in machine learning. arXiv 2018. arXiv preprint arXiv:1811.12808.
]Search in Google Scholar
[
Tani, L., Rand, D., Veelken, C., & Kadastik, M. (2021). Evolutionary algorithms for hyperparameter optimization in machine learning for application in high energy physics. The European Physical Journal C, 81, 1-9.
]Search in Google Scholar
[
Tay, Y., Dehghani, M., Tran, V. Q., Garcia, X., Wei, J., Wang, X., ... & Metzler, D. (2022). Ul2: Unifying language learning paradigms. arXiv preprint arXiv:2205.05131.
]Search in Google Scholar
[
Vasile, A., Rădulescu, R., & Păvăloiu, I. B. (2014). Topic classification in Romanian blogosphere. In 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL) (pp. 131-134). IEEE.
]Search in Google Scholar
[
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
]Search in Google Scholar
[
Vayansky, I., & Kumar, S. A. (2020). A review of topic modeling methods. Information Systems, 94, 101582.
]Search in Google Scholar
[
Velankar, A., Patil, H., & Joshi, R. (2022). Mono vs multilingual bert for hate speech detection and text classification: A case study in marathi. In IAPR workshop on artificial neural networks in pattern recognition (pp. 121-128). Cham: Springer International Publishing.
]Search in Google Scholar
[
Wei, J., Garrette, D., Linzen, T., & Pavlick, E. (2021). Frequency effects on syntactic rule learning in transformers. arXiv preprint arXiv:2109.07020.
]Search in Google Scholar
[
Wettig, A., Gao, T., Zhong, Z., & Chen, D. (2022). Should you mask 15% in masked language modeling?. arXiv preprint arXiv:2202.08005.
]Search in Google Scholar
[
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 (pp. 818-833). Springer International Publishing.
]Search in Google Scholar
[
Zeng, J., Li, J., Song, Y., Gao, C., Lyu, M. R., & King, I. (2018). Topic memory networks for short text classification. arXiv preprint arXiv:1809.03664.
]Search in Google Scholar
[
Zhang, A., Lipton, Z. C., Li, M., & Smola, A. J. (2023). Dive into deep learning. Cambridge University Press.
]Search in Google Scholar
[
Zhang, Y., Jin, R., & Zhou, Z. H. (2010). Understanding bag-of-words model: a statistical framework. International journal of machine learning and cybernetics, 1, 43-52. Zhao, J., Liu, K., & Xu, L. (2016). Sentiment analysis: Mining opinions, sentiments, and emotions.
]Search in Google Scholar