Acceso abierto

Effect of the Acute Total Gamma Radiation in a Sublethal Dose on the Biophysical Properties of Red Blood Cells, Lipid Peroxidation, Antioxidant Supply and Hemocoagulating Properties of Erythrocytes


Cite

Effects of ionizing radiation on blood and blood components: A survey. (1997). Vienna: IAEA. Search in Google Scholar

Burlakova EB, Atkarskaya MV, Fatkullina LD, Andreev S. Radiation-induced changes in the structural state of human blood cell membranes. Radiats Biol Radioecol. 2014;54(2):162-8. Search in Google Scholar

Izmest’eva OS, Luzianina AA, Ershova IL, Zhavoronkov LP. Study of the influence of low-dose γ-irradiation on the functional state of peripheral blood erythrocytes of rats. Radiats Biol Radioecol. 2014;54(5):493-9. Search in Google Scholar

Wei J, Wang B, Wang H, Meng L, Zhao Q, Li X, et al. Radiation-Induced Normal Tissue Damage: Oxidative Stress and Epigenetic Mechanisms. Oxid Med Cell Longev. 2019;2019:3010342. Search in Google Scholar

Krigsfeld GS, Kennedy AR. Is Disseminated Intravascular Coagulation the Major Cause of Mortality from Radiation at Relatively Low Whole Body Doses? Radiat Res. 2013;180(3):231-4. Search in Google Scholar

Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT Sci Ser. 2017;12(1):176-183. Search in Google Scholar

Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost. 2019;17(2):271-282. Search in Google Scholar

Guney Y, Bukan N, Dizman A, Hicsonmez A, Bilgihan A. Effects of two different high doses of irradiation on antioxidant system in the liver of guinea pigs. Eksp Onkol. 2004;26(1):71-4. Search in Google Scholar

Bond V, Flidner T, Arshambeau D (1971). Radiation death of mammals. Violation of the kinetics of cell populations. Moscow Russia: Atomizdat. Search in Google Scholar

Kuzmenko EV. Modern approaches to the determination of group and individual radiosensitivity of an organism. Scientific notes of the Vernadsky Crimean Federal University. Series “Biology. Chemistry”. 2011;24(63):N1: 109-22. Search in Google Scholar

Bond V. (1974) Radiation death of animals of various types. Comparative cellular and species radiosensitivity. Moscow Russia: Atomizdat. Search in Google Scholar

Samoilovich MP, Klimovich VB. Cell composition of lymphoid organs and parameters of the immune response of mice at a later time after irradiation. Radiobiology. 1982;3:359-64. Search in Google Scholar

Leonova VG (1987). Analysis of erythrocyte populations in human ontogenesis. Novosibirsk Russia: Science, Siberian Branch. Search in Google Scholar

Jager FC. Determination of vitamin E requirement in rats by means of spontaneous haemolysis in vitro. Nutr.Diets. 1968;10(3):215-23. Search in Google Scholar

Kamyshnikov VS (2009). Handbook on clinical and biochemical research and laboratory diagnostics. Moscow Russia: MEDpress-inform. Search in Google Scholar

Brusov OS, Gerasimov AM, Panchenko LF. The influence of natural inhibitors of radical reactions on autooxidation of adrenaline. Biull Eksp Biol Med. 1976 Jan;81(1):33-5. Search in Google Scholar

Arkhipova OG, editor. (1988). Research methods in occupational pathology (Biochemical): A guide for doctors. Moscow Russia: Medicine. Search in Google Scholar

Barkagan ZS, Momot AP. (2008). Diagnostics and controlled therapy of hemostasis disorders. Moscow Russia: NewDiaMed. Search in Google Scholar

Shevchenko OG. Changes in the composition of erythrocyte phospholipids upon exposure to low-intensity ionizing radiation of different dose rates. Bulletin of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2009;5(139):34-6. Search in Google Scholar

Shevchenko OG. Phospholipid component of erythrocyte membranes in health and disease. Bulletin of the Institute of Biology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences. 2007; 2 (112): 2-8. Search in Google Scholar

Bulanova KY, Lobanok LM, Bokut SB, Milevich TI. Features of changes in the structural organization of erythrocyte membranes and hemoglobin molecules depending on the power and dose of γ-irradiation. Ecological Bulletin. 2015;2(32):40-5. Search in Google Scholar

Szweda-Lewandowska Z, Krokosz A, Gonciarz M, Zajeczkowska W, Puchała M. Damage to human erythrocytes by radiation-generated HO* radicals: molecular changes in erythrocyte membranes. Free Radic Res. 2003;37(10):1137-43. Search in Google Scholar

Nimker S, Sharma K, Saraswathy R, Chandna S. Delineating the Effects of Ionizing Radiation on Erythropoietic Lineage-Implications for Radiation Biodosimetry. Health Phys. 2019;116(5):677-693. Search in Google Scholar

Peslak SA, Wenger J, Bemis JC, Kingsley PD, Koniski AD, McGrath KE, et al. EPO-mediated expansion of late-stage erythroid progenitors in the bone marrow initiates recovery from sublethal radiation stress. Blood. 2012;120(12):2501-11. Search in Google Scholar

Meerson FZ (1986). Physiology of adaptation processes. Moscow Russia: Science. Search in Google Scholar

Shimizu T, Nakanishi Y, Nakahara M, Wada N, Moro-Oka Y, Hirano T, et al. Structure Effect on Antioxidant Activity of Catecholamines toward Singlet Oxygen and Other Reactive Oxygen Species in vitro. J Clin Biochem Nutr. 2010;47(3):181-90. Search in Google Scholar

Mooradian AD. Antioxidant properties of steroids. J Steroid Biochem Mol Biol. 1993;45(6):509-11. Search in Google Scholar

Winn JS, Guille J, Gebicki JM, Day RO. Hydrogen peroxide modulation of the respiratory burst of human neutrophils. Biochem Pharmacol. 1991;41(1):31-6. Search in Google Scholar

Galankin VN. Compensatory reactions are a special class of phenomena. Archive of pathology. 1990;52(5): 60-6. Search in Google Scholar

Baehner RZ, Boxer LA, Ingrahaffi LM. Reduced oxygen by products and white blood cells. Free radical in biology. 1982;5: 91-113. Search in Google Scholar

Baynes JW, Dominiczak MH (2019). Medical Biochemistry 5th Edition. Edinburgh: Elsevier Health Sciences. Search in Google Scholar

Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol. 2019;29(1):33-41. Search in Google Scholar

Antonenko SG, Berlin NK, Chebotarev EK. Participation of cyclic nucleotides in the implementation of the action of ceruloplasmin during irradiation. Radiobiology. 1984;24(3):334-6. Search in Google Scholar

Serkiz YaI, Druzhina NA, Khrienko AP, Pavlenko IO, Shlumukova IF (1989). Blood chemiluminescence at a radiation-damage. Kiev Ukraine: Nauk.dumka. Search in Google Scholar

Tran PL, Pietropaolo MG, Valerio L, Brengle W, Wong RK, Kazui T, et al. Hemolysate-mediated platelet aggregation: an additional risk mechanism contributing to thrombosis of continuous flow ventricular assist devices. Perfusion. 2016;31(5):401-8. Search in Google Scholar

eISSN:
2956-0454
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other