Cite

1. Schernthaner G, Schernthaner GH. The right place for metformin today. Diabetes Res Clin Pract. 2020;159:107946. doi: 10.1016/j.diabres.2019.107946.31778746 Open DOISearch in Google Scholar

2. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253-70.10.1042/CS20110386339886222117616 Search in Google Scholar

3. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348 Pt 3(Pt 3):607-14.10.1042/bj3480607 Search in Google Scholar

4. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510(7506):542-6.10.1038/nature13270407424424847880 Search in Google Scholar

5. Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, et al. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J. 2019;33(2):2858-2869.10.1096/fj.201800529RR633864430321069 Search in Google Scholar

6. Turban S, Stretton C, Drouin O, Green CJ, Watson ML, Gray A, et al. Defining the contribution of AMPactivated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J Biol Chem. 2012;287(24):20088-99.10.1074/jbc.M111.330746337019222511782 Search in Google Scholar

7. Hostalek U, Gwilt M, Hildemann S. Therapeutic Use of Metformin in Prediabetes and Diabetes Prevention. Drugs. 2015;75(10):1071-94.10.1007/s40265-015-0416-8449827926059289 Search in Google Scholar

8. Yerevanian A, Soukas AA. Metformin: Mechanisms in Human Obesity and Weight Loss. CurrObes Rep. 2019;8(2):156-164.10.1007/s13679-019-00335-3652018530874963 Search in Google Scholar

9. Seifarth C, Schehler B, Schneider HJ. Effectiveness of metformin on weight loss in non-diabetic individuals with obesity. Exp Clin Endocrinol Diabetes. 2013;121(1):27-31. Search in Google Scholar

10. Harris K, Smith L. Safety and efficacy of metformin in patients with type 2 diabetes mellitus and chronic hepatitis C. Ann Pharmacother. 2013;47(10):1348-52.10.1177/106002801350310824259699 Search in Google Scholar

11. Kuan W, Beavers CJ, Guglin ME. Still sour about lactic acidosis years later: role of metformin in heart failure. Heart Fail Rev. 2018;23(3):347-353.10.1007/s10741-017-9649-928868582 Search in Google Scholar

12. Mohan M, Al-Talabany S, McKinnie A, Mordi IR, Singh JSS, Gandy SJ, et al. A randomized controlled trial of metformin on left ventricular hypertrophy in patients with coronary artery disease without diabetes: the METREMODEL trial. Eur Heart J. 2019;40(41):3409-3417.10.1093/eurheartj/ehz203682361530993313 Search in Google Scholar

13. Bell S, Farran B, McGurnaghan S, McCrimmon RJ, Leese GP, Petrie JR, et al. Risk of acute kidney injury and survival in patients treated with Metformin: an observational cohort study. BMC Nephrol. 2017;18(1):163.10.1186/s12882-017-0579-5543741128526011 Search in Google Scholar

14. Charytan DM, Solomon SD, Ivanovich P, Remuzzi G, Cooper ME, McGill JB, et al. Metformin use and cardiovascular events in patients with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2019;21(5):1199-1208.10.1111/dom.1364230672083 Search in Google Scholar

15. Valencia WM, Palacio A, Tamariz L, Florez H. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia. 2017;60(9):1630-1638.10.1007/s00125-017-4349-5570920928770328 Search in Google Scholar

16. Kasznicki J, Sliwinska A, Drzewoski J. Metformin in cancer prevention and therapy. Ann Transl Med. 2014;2(6):57. Search in Google Scholar

17. Ko EM, Walter P, Jackson A, Clark L, Franasiak J, Bolac C, et al. Metformin is associated with improved survival in endometrial cancer. Gynecol Oncol. 2014;132(2):438-42.10.1016/j.ygyno.2013.11.02124269517 Search in Google Scholar

18. Feng JL, Qin X. Metformin and cancer-specific survival among breast, colorectal, or endometrial cancer patients: A nationwide data linkage study. Diabetes Res Clin Pract. 2021;175:108755. doi: 10.1016/j.diabres.2021.108755.33836207 Open DOISearch in Google Scholar

19. Li K, Zhang TT, Wang F, Cui B, Zhao CX, Yu JJ, et al. Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression. Oncogene. 2018;37(22):2967-2981.10.1038/s41388-018-0172-929520103 Search in Google Scholar

20. Lan B, Zhang J, Zhang P, Zhang W, Yang S, Lu D, et al. Metformin suppresses CRC growth by inducing apoptosis via ADORA1. Front Biosci (Landmark Ed). 2017;22:248-257.10.2741/448427814614 Search in Google Scholar

21. Kahn BB, Alquier T, Carling D, Hardie DG. AMPactivated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15-25.10.1016/j.cmet.2004.12.00316054041 Search in Google Scholar

22. Shaw RJ. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth. Acta Physiol (Oxf). 2009;196(1):65-80.10.1111/j.1748-1716.2009.01972.x276030819245654 Search in Google Scholar

23. Tian, Tian & Li, Xiaoyi & Zhang, Jinhua. mTOR Signaling in Cancer and mTOR Inhibitors in Solid Tumor Targeting Therapy. International Journal of Molecular Sciences. 2019;20(3):755.10.3390/ijms20030755638704230754640 Search in Google Scholar

24. Lu CC, Chiang JH, Tsai FJ, Hsu YM, Juan YN, Yang JS, et al. Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int J Oncol. 2019;54(4):1271-1281. Search in Google Scholar

25. Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9(5):e98207. doi: 10.1371/journal.pone.0098207.403229324858012 Open DOISearch in Google Scholar

26. Moro M, Caiola E, Ganzinelli M, Zulato E, Rulli E, Marabese M, et al. Metformin Enhances Cisplatin Induced Apoptosis and Prevents Resistance to Cisplatin in Comutated KRAS/LKB1 NSCLC. J. Thorac. Oncol. 2018;13(11):1692–1704. Search in Google Scholar

27. Zhao Y, Zhang E, Lv N, Ma L, Yao S, Yan M, et al. Metformin and FTY720 Synergistically Induce Apoptosis in Multiple Myeloma Cells. Cell. Physiol. Biochem. 2018;48:785–800. Search in Google Scholar

28. Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, et al. Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 2019;450:22-31.10.1016/j.canlet.2019.02.01430771436 Search in Google Scholar

29. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61-75.10.1111/imr.12534541682228462526 Search in Google Scholar

30. Zheng Z, Bian Y, Zhang Y, Ren G, Li G. Metformin activates AMPK/SIRT1/NF-κB pathway and induces mitochondrial dysfunction to drive caspase3/GSDMEmediated cancer cell pyroptosis. Cell Cycle. 2020;19(10):1089-1104.10.1080/15384101.2020.1743911721736832286137 Search in Google Scholar

31. Shida D, Takabe K, Kapitonov D, Milstien S, Spiegel S. Targeting SphK1 as a new strategy against cancer. Curr Drug Targets 2008;9:662–73.10.2174/138945008785132402267457518691013 Search in Google Scholar

32. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature. 1996;381(6585):800-3.10.1038/381800a08657285 Search in Google Scholar

33. Maceyka M, Payne SG, Milstien S, Spiegel S. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. BiochimBiophys Acta. 2002;1585(2-3):193-201.10.1016/S1388-1981(02)00341-412531554 Search in Google Scholar

34. Hart PC, Chiyoda T, Liu X, Weigert M, Curtis M, Chiang CY, et al. SPHK1 Is a Novel Target of Metformin in Ovarian Cancer. Mol Cancer Res. 2019;17(4):870-881.10.1158/1541-7786.MCR-18-0409644568930655321 Search in Google Scholar

35. Wang X, Sun Y, Peng X, Naqvi SMAS, Yang Y, Zhang J, et al. The Tumorigenic Effect of Sphingosine Kinase 1 and Its Potential Therapeutic Target. Cancer Control. 2020;27(1):1073274820976664. doi: 10.1177/1073274820976664.848035533317322 Open DOISearch in Google Scholar

36. Matsuzawa A, Nishitoh H, Tobiume K, Takeda K, Ichijo H. Physiological roles of ASK1-mediated signal transduction in oxidative stress- and endoplasmic reticulum stress-induced apoptosis: advanced findings from ASK1 knockout mice. Antioxid Redox Signal. 2002;4(3):415-25.10.1089/1523086026019621812215209 Search in Google Scholar

37. Ma L, Wei J, Wan J, Wang W, Wang L, Yuan Y, et al. Low glucose and metformin-induced apoptosis of human ovarian cancer cells is connected to ASK1 via mitochondrial and endoplasmic reticulum stress-associated pathways. J Exp Clin Cancer Res. 2019;38(1):77.10.1186/s13046-019-1090-6637518730760281 Search in Google Scholar

38. Yi Y, Zhang W, Yi J, Xiao ZX. Role of p53 Family Proteins in Metformin Anti-Cancer Activities. J Cancer. 2019;10(11):2434-2442.10.7150/jca.30659658434031258748 Search in Google Scholar

39. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323-331.10.1016/S0092-8674(00)81871-19039259 Search in Google Scholar

40. Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis - the p53 network. J Cell Sci. 2003;116:4077–85.10.1242/jcs.0073912972501 Search in Google Scholar

41. Yudhani RD, Astuti I, Mustofa M, Indarto D, Muthmainah M. Metformin Modulates Cyclin D1 and P53 Expression to Inhibit Cell Proliferation and to Induce Apoptosis in Cervical Cancer Cell Lines. Asian Pac J Cancer Prev. 2019;20(6):1667-1673.10.31557/APJCP.2019.20.6.1667702160631244286 Search in Google Scholar

42. Chen YH, Yang SF, Yang CK, Tsai HD, Chen TH, Chou MC, et al. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol Med Rep. 2021;23(1):88.10.3892/mmr.2020.11725771642633236135 Search in Google Scholar

43. Li P, Zhao M, Parris AB, Feng X, Yang X. p53 is required for metformin-induced growth inhibition, senescence and apoptosis in breast cancer cells. BiochemBiophys Res Commun. 2015;464(4):1267-1274.10.1016/j.bbrc.2015.07.11726225749 Search in Google Scholar

44. Ahn HK, Lee YH, Koo KC. Current Status and Application of Metformin for Prostate Cancer: A Comprehensive Review. Int J Mol Sci. 2020;21(22):8540.10.3390/ijms21228540769814733198356 Search in Google Scholar

45. Sun Y, Tao C, Huang X, He H, Shi H, Zhang Q, et al. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. Onco Targets Ther. 2016;9:2845-53. Search in Google Scholar

46. Tran LNK, Kichenadasse G, Butler LM, Centenera MM, Morel KL, Ormsby RJ, et al. The Combination of Metformin and Valproic Acid Induces Synergistic Apoptosis in the Presence of p53 and Androgen Signaling in Prostate Cancer. Mol Cancer Ther. 2017;16(12):2689-2700.10.1158/1535-7163.MCT-17-007428802253 Search in Google Scholar

47. Ben Sahra I, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010;70(6):2465-75.10.1158/0008-5472.CAN-09-278220215500 Search in Google Scholar

48. Feng Y, Ke C, Tang Q, Dong H, Zheng X, Lin W, et al. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling. Cell Death Dis. 2014;5(2):e1088. doi: 10.1038/cddis.2014.59.394427124577086 Open DOISearch in Google Scholar

49. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9(11):798-809.10.1038/nrc2734485602519851315 Search in Google Scholar

50. Nielsen M, Kaestel CG, Eriksen KW, Woetmann A, Stokkedal T, Kaltoft K, et al. Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. Leukemia. 1999;13(5):735-8.10.1038/sj.leu.240141510374878 Search in Google Scholar

51. Deng XS, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, et al. Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle. 2012;11(2):367-76.10.4161/cc.11.2.1881322189713 Search in Google Scholar

52. Griffiths CL, Olin JL. Triple negative breast cancer: a brief review of its characteristics and treatment options. J Pharm Pract. 2012;25(3):319-23.10.1177/089719001244206222551559 Search in Google Scholar

53. Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2(9):e199. doi: 10.1038/cddis.2011.86.318690421881601 Open DOISearch in Google Scholar

54. Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008;27(48):6194-206.10.1038/onc.2008.29718931687 Search in Google Scholar

55. Wang LW, Li ZS, Zou DW, Jin ZD, Gao J, Xu GM. Metformin induces apoptosis of pancreatic cancer cells. World J Gastroenterol. 2008;14(47):7192-8.10.3748/wjg.14.7192498835619084933 Search in Google Scholar

56. Isakovic A, Harhaji L, Stevanovic D, Markovic Z, Sumarac-Dumanovic M, Starcevic V, et al. Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis. Cell Mol Life Sci. 2007;64(10):1290-302.10.1007/s00018-007-7080-417447005 Search in Google Scholar

57. Gao ZY, Liu Z, Bi MH, Zhang JJ, Han ZQ, Han X, et al. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro. Exp Ther Med. 2016;11(5):1700-1706.10.3892/etm.2016.3143484052627168791 Search in Google Scholar

58. Takahashi A, Kimura F, Yamanaka A, Takebayashi A, Kita N, Takahashi K, et al. Metformin impairs growth of endometrial cancer cells via cell cycle arrest and concomitant autophagy and apoptosis. Cancer Cell Int. 2014;14:53. doi: 10.1186/1475-2867-14-53.407040124966801 Open DOISearch in Google Scholar

59. Jang JH, Sung EG, Song IH, Lee TJ, Kim JY. Metformin induces caspase-dependent and caspase-independent apoptosis in human bladder cancer T24 cells. Anticancer Drugs. 2020;31(7):655-662.10.1097/CAD.0000000000000966736567032568826 Search in Google Scholar

60. Cha JH, Yang WH, Xia W, Wei Y, Chan LC, Lim SO, et al. Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PDL1. Mol Cell. 2018;71(4):606-620.10.1016/j.molcel.2018.07.030678649530118680 Search in Google Scholar

61. Yu W, Hua Y, Qiu H. et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis 11, 506 (2020).10.1038/s41419-020-2701-z733845732632098 Search in Google Scholar

62. Jovanovic M, Gajovic N, Lukic M, Popovic A, Jovanovic IP. Synergism of PDL/PD1 and IL33/ST2 axis in tumor immunology. Ser J Exp Clin Res. 2019;20(3):223-228.10.2478/sjecr-2018-0033 Search in Google Scholar

63. Jovanovic M, Gajovic N, Jurisevic M, Sekulic S, Arsenijevic N, Jocic M, et al. Anti PD1 therapy activates tumoricidic properties of NKT cells and contributes to overall deceleration of tumor progression in a model of murine mammary carcinoma. Vojnosanitpregl. 2021; doi: 10.2298/VSP210126039J Open DOISearch in Google Scholar

64. Jovanovic M, Geller D, Gajovic N, Jurisevic M, Arsenijevic N, Jovanovic M, et al. Dual blockage of PD-L/PD-1 and IL33/ST2 axes slows tumor growth and improves antitumor immunity by boosting NK cells. Life Sciences. 2022;289:120214. doi.org/10.1016/j.lfs.2021.12021410.1016/j.lfs.2021.12021434890591 Search in Google Scholar

65. Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. 2020;10(3):727-742. Search in Google Scholar

66. Zhang JJ, Zhang QS, Li ZQ, Zhou JW, Du J. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. Am J Transl Res. 2019;11(11):6965-6976. Search in Google Scholar

67. Xue J, Li L, Li N, Li F, Qin X, Li T, et al. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur J Pharmacol. 2019;15;859:172541. doi: 10.1016/j.ejphar.2019.172541.31319067 Open DOISearch in Google Scholar

68. Petty AJ, Yang Y. Tumor-associated macrophages: implications in cancer immunotherapy. Immunotherapy. 2017;9(3):289-302.10.2217/imt-2016-0135561905228231720 Search in Google Scholar

69. Ding L, Liang G, Yao Z, Zhang J, Liu R, Chen H, et al. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget. 2015;6(34):36441-55.10.18632/oncotarget.5541474218826497364 Search in Google Scholar

70. Saito A, Kitayama J, Horie H, Koinuma K, Ohzawa H, Yamaguchi H, et al. Metformin changes the immune microenvironment of colorectal cancer in patients with type 2 diabetes mellitus. Cancer Sci. 2020;111(11):4012-4020.10.1111/cas.14615764804232794612 Search in Google Scholar

71. Chiang CF, Chao TT, Su YF, Hsu CC, Chien CY, Chiu KC, et al. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget. 2017;8(13):20706-20718.10.18632/oncotarget.14982540053828157701 Search in Google Scholar

72. Ma Q, Gu JT, Wang B, Feng J, Yang L, Kang XW, et al. PlGF signaling and macrophage repolarization contribute to the anti-neoplastic effect of metformin. Eur J Pharmacol. 2019; 15;863:172696. doi: 10.1016/j.ejphar.2019.172696.31562866 Open DOISearch in Google Scholar

73. St Paul M, Ohashi PS. The Roles of CD8+ T Cell Subsets in Antitumor Immunity. Trends Cell Biol. 2020;30(9):695-704.10.1016/j.tcb.2020.06.00332624246 Search in Google Scholar

74. Blank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining ‘T cell exhaustion’. Nat Rev Immunol. 2019;19(11):665-674.10.1038/s41577-019-0221-9728644131570879 Search in Google Scholar

75. Watanabe M, Eikawa S, Shien K, Yamamoto H, Shien T, Soh J, et al. Abstract 5592: metformin improves immune function of exhausted peripheral CD8+ T cells derived from cancer patients. Cancer Res. 2017; 77(13 Suppl):5592–5592.10.1158/1538-7445.AM2017-5592 Search in Google Scholar

76. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112(6):1809-14.10.1073/pnas.1417636112433073325624476 Search in Google Scholar

77. Zhang Z, Li F, Tian Y, Cao L, Gao Q, Zhang C, et al. Metformin Enhances the Antitumor Activity of CD8+ T Lymphocytes via the AMPK-miR-107-Eomes-PD-1 Pathway. J Immunol. 2020;204(9):2575-2588.10.4049/jimmunol.190121332221038 Search in Google Scholar

78. Kunisada Y, Eikawa S, Tomonobu N, Domae S, Uehara T, Hori S, et al. Attenuation of CD4+CD25+ Regulatory T Cells in the Tumor Microenvironment by Metformin, a Type 2 Diabetes Drug. EBioMedicine. 2017;25:154-164.10.1016/j.ebiom.2017.10.009570405329066174 Search in Google Scholar

79. Ohue Y, Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Sci. 2019;110(7):2080-2089.10.1111/cas.14069660981331102428 Search in Google Scholar

80. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057-61.10.1126/science.107949012522256 Search in Google Scholar

81. Wei L, Luo Z, Li J, Li H, Liang Y, Li J, et al. Metformin inhibits proliferation and functions of regulatory T cells in acidic environment. 2019;39(12):1427-1435. Search in Google Scholar

82. Pereira FV, Melo ACL, Low JS, de Castro ÍA, Braga TT, Almeida DC, et al. Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget. 2018;9(40):25808-25825.10.18632/oncotarget.25380599525329899823 Search in Google Scholar

83. Reiser J, Banerjee A. Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response. J Immunol Res. 2016;2016:8941260. doi: 10.1155/2016/8941260.489344027314056 Open DOISearch in Google Scholar

84. Zhao D, Long XD, Lu TF, Wang T, Zhang WW, Liu YX, et al. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer. 2015;136(11):25 56-65.10.1002/ijc.2930525370454 Search in Google Scholar

85. Peng Y, Gao X, Yang J. et al. Interleukin-22 Promotes T Helper 1 (Th1)/Th17 Immunity in Chlamydial Lung Infection. Mol Med 20, 2014; 109–119.10.2119/molmed.2013.00115396039724531835 Search in Google Scholar

86. Li L, Wang L, Li J, Fan Z, Yang L, Zhang Z, et al. Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Res. 2018;78(7):1779-1791.10.1158/0008-5472.CAN-17-2460588258929374065 Search in Google Scholar

87. Xu P, Yin K, Tang X, Tian J, Zhang Y, Ma J, et al. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed Pharmacother. 2019;120:109458. doi: 10.1016/j.biopha.2019.109458.31550676 Open DOISearch in Google Scholar

88. Hirayama T, Nagata Y, Nishida M, Matsuo M, Kobayashi S, Yoneda A, et al. Metformin Prevents Peritoneal Dissemination via Immune-suppressive Cells in the Tumor Microenvironment. Anticancer Res. 2019;39(9):4699-4709.10.21873/anticanres.1365231519569 Search in Google Scholar

89. Qin G, Lian J, Huang L, Zhao Q, Liu S, Zhang Z, et al. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncoimmunology. 2018;7(7):e1442167. doi: 10.1080/21624 02X.2018.1442167. Open DOISearch in Google Scholar

90. Uehara T, Eikawa S, Nishida M, Kunisada Y, Yoshida A, Fujiwara T, et al. Metformin induces CD11b+-cellmediated growth inhibition of an osteosarcoma: implications for metabolic reprogramming of myeloid cells and anti-tumor effects. Int Immunol. 2019;31(4):187-198.10.1093/intimm/dxy079644044130508092 Search in Google Scholar

91. Filipazzi P, Huber V, Rivoltini L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother. 2012;61(2):255-263.10.1007/s00262-011-1161-922120756 Search in Google Scholar

92. Ostrand-Rosenberg S. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 2010;59(10):1593-600.10.1007/s00262-010-0855-8370626120414655 Search in Google Scholar

93. Gajovic N, Jurisevic M, Pantic J, Radosavljevic G, Arsenijevic N, Lukic ML, et al. Attenuation of NK cells facilitates mammary tumor growth in streptozotocin-induced diabetes in mice. Endocrine-related cancer 2018; 25: 493-507.10.1530/ERC-17-052929459428 Search in Google Scholar

94. Lee S, Margolin K. Cytokines in cancer immunotherapy. Cancers (Basel). 2011;3(4):3856-93.10.3390/cancers3043856376340024213115 Search in Google Scholar

95. Karadeniz Z, Aynacıoğlu AŞ, Bilir A, Tuna MY. Inhibition of midkine by metformin can contribute to its anticancer effects in malignancies: A proposal mechanism of action of metformin in context of endometrial cancer prevention and therapy. Med Hypotheses. 2020;134:e109420. doi: 10.1016/j.mehy.2019.109420.31634770 Open DOISearch in Google Scholar

96. Filippou PS, Karagiannis GS, Constantinidou A. Midkine (MDK) growth factor: a key player in cancer progression and a promising therapeutic target. Oncogene. 2020;39(10):2040-2054.10.1038/s41388-019-1124-831801970 Search in Google Scholar

97. Mishra A. K., Dingli D. Metformin inhibits IL-6 signaling by decreasing IL-6R expression on multiple myeloma cells. Leukemia, 2019;33(11), 2695-2709.10.1038/s41375-019-0470-430988378 Search in Google Scholar

98. Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37(9):11553-11572.10.1007/s13277-016-5098-727260630 Search in Google Scholar

99. Kang S, Kim BR, Kang MH, Kim DY, Lee DH, Oh SC, et al. Anti-metastatic effect of metformin via repression of interleukin 6-induced epithelial-mesenchymal transition in human colon cancer cells. PLoS One. 2018;13(10):e0205449. doi: 10.1371/journal.pone.0205449.618137530308035 Open DOISearch in Google Scholar

100.Shuchen Gu, Xin-Hua Feng. TGF-β signaling in cancer, Acta Biochimica et BiophysicaSinica, 2018;50(10):941-949. Search in Google Scholar

101.Gajovic N, Jovanovic I, Ilic A, Jeremic N, Jakovljevic V, Arsenijevic N, et al. Diabetes mellitus directs NKT cells toward type 2 and regulatory phenotype Ser J Exp Clin Res. 2016; 17 (1): 35-41. Search in Google Scholar

102.Xiao H, Zhang J, Xu Z, et al. Metformin is a novel suppressor for transforming growth factor (TGF)-β1. Sci Rep. 2016;6:28597. doi: 10.1038/srep28597492385827349853 Open DOISearch in Google Scholar

103.Leonel C, Borin TF, de Carvalho Ferreira L, Moschetta MG, Bajgelman MC, Viloria-Petit AM, et al. Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. J Mammary Gland Biol Neoplasia. 2017;22(1):27-41.10.1007/s10911-016-9370-728078601 Search in Google Scholar

104.Song Y, Chen Y, Li Y, Lyu X, Cui J, Cheng Y, et al. Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway. Oncotarget. 2017;9(6):7023-7035.10.18632/oncotarget.23317580553329467947 Search in Google Scholar

105.Chengye W, Yu T, Ping S, Deguang S, Keyun W, Yan W, et al. Metformin reverses bFGF-induced epithelialmesenchymal transition in HCC cells. Oncotarget. 2017;8(61):104247-104257.10.18632/oncotarget.22200573280329262637 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other