Cite

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3):209.10.3322/caac.2166033538338 Search in Google Scholar

2. Baliu-Piqué M, Pandiella A, Ocana A. Breast cancer heterogeneity and response to novel therapeutics. Cancers (Basel) 2020; 12(11):3271.10.3390/cancers12113271769430333167363 Search in Google Scholar

3. Aggarwal S, Verma SS, Aggarwal S, Gupta SC. Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol 2021; 68:8-20.10.1016/j.semcancer.2019.09.012712877231550502 Search in Google Scholar

4. Polyak K. Heterogeneity in breast cancer. J Clin Invest 2011; 121(10):3786-8.10.1172/JCI60534319548921965334 Search in Google Scholar

5. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3:7.10.1038/s41392-017-0004-3585457829560283 Search in Google Scholar

6. Mansoori B, Mohammadi A, Davudian S, Shirjang S, Baradaran B. The different mechanisms of cancer drug resistance: A Brief Review. Adv Pharm Bull 2017; 7(3):339-48.10.15171/apb.2017.041565105429071215 Search in Google Scholar

7. Xie M, Liu D, Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol 2020; 10(7):200004.10.1098/rsob.200004757455332692959 Search in Google Scholar

8. Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules 2020; 25(12):2850.10.3390/molecules25122850735614732575664 Search in Google Scholar

9. Pantic JM, Jovanovic IP, Radosavljevic GD, Arsenijevic NN, Conlon JM, Lukic ML. The potential of frog skinderived peptides for development into therapeuticallyvaluable immunomodulatory agents. Molecules 2017; 22(12):2071.10.3390/molecules22122071615003329236056 Search in Google Scholar

10. Burdukiewicz M, Sidorczuk K, Rafacz D, Pietluch F, Bąkała M, Słowik J et al. CancerGram: an effective classifier for differentiating anticancer from antimicrobial peptides. Pharmaceutics 2020; 12(11):1045.10.3390/pharmaceutics12111045769264133142753 Search in Google Scholar

11. Ju X, Fan D, Kong L, Yang Q, Zhu Y, Zhang S et al. Antimicrobial peptide brevivin-1RL1 from frog skin secretion induces apoptosis and necrosis of tumor cells. Molecules 2021; 26(7):2059.10.3390/molecules26072059803834733916789 Search in Google Scholar

12. Mangoni ML, Casciaro B. Development of antimicrobial peptides from Amphibians. Antibiotics (Basel) 2020; 9(11):772.10.3390/antibiotics9110772769278633158031 Search in Google Scholar

13. Conlon JM, Mechkarska M, Abdel-Wahab YH, Flatt PR. Peptides from frog skin with potential for development into agents for Type 2 diabetes therapy. Peptides 2018; 100:275-81.10.1016/j.peptides.2017.09.00128887047 Search in Google Scholar

14. Chiangjong W, Chutipongtanate S, Hongeng S. Anticancer peptide: physicochemical property, functional aspect and trend in clinical application (Review). Int J Oncol 2020; 57(3):678-96.10.3892/ijo.2020.5099738484532705178 Search in Google Scholar

15. Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects. Cell Mol Life Sci 2017; 74(20):3809-25.10.1007/s00018-017-2604-z28770291 Search in Google Scholar

16. Perrin BS Jr, Pastor RW. Simulations of membrane-disrupting peptides I: Alamethicin pore stability and spontaneous insertion. Biophysical Journal 2016; 111(6):1248-57.10.1016/j.bpj.2016.08.014503436527653483 Search in Google Scholar

17. Kuo HM, Tseng CC, Chen NF, Tai MH, Hung HC, Feng CW et al. MSP-4, an antimicrobial peptide, induces apoptosis via activation of extrinsic Fas/FasLand intrinsic mitochondria-mediated pathways in one osteosarcoma Ccll line Mar Drugs 2018; 16(1):8 Search in Google Scholar

18. Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res 2014; 768:84-97.10.1016/j.mrfmmm.2014.03.00524685981 Search in Google Scholar

19. Wu SP, Huang TC, Lin CC, Hui CF, Lin CH, Chen JY. Pardaxin, a fish antimicrobial peptide, exhibits antitumor activity toward murine fibrosarcoma in vitro and in vivo. Mar Drugs 2012; 10(8):1852-72. Search in Google Scholar

20. Li X, Shen B, Chen Q, Zhang X, Ye Y, Wang F et al. Antitumor effects of cecropin B-LHRH’ on drug-resistant ovarian and endometrial cancer cells. BMC Cancer 2016; 16:251.10.1186/s12885-016-2287-0480903627021903 Search in Google Scholar

21. Hilchie AL, Hoskin DW, Power Coombs MR. Anticancer Activities of Natural and Synthetic Peptides. Adv Exp Med Biol 2019; 1117:131-47.10.1007/978-981-13-3588-4_930980357 Search in Google Scholar

22. Wang YK, He HL, Wang GF, Wu H, Zhou BC, Chen XL et al. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar Drugs 2010; 8(2):255-68.10.3390/md8020255285283720390104 Search in Google Scholar

23. Li D, Wang W, Shi HS, Fu YJ, Chen X, Chen XC et al. Gene therapy with beta-defensin 2 induces antitumor immunity and enhances local antitumor effects. Hum Gene Ther 2014; 25(1):63-72.10.1089/hum.2013.16124134464 Search in Google Scholar

24. Economopoulou M, Bdeir K, Cines DB, Fogt F, Bdeir Y, Lubkowski J et al. Inhibition of pathologic retinal neovascularization by alpha-defensins. Blood 2005; 106(12):3831-8.10.1182/blood-2005-03-0889189509816123222 Search in Google Scholar

25. Chavakis T, Cines DB, Rhee JS, Liang OD, Schubert U, Hammes HP et al. Regulation of neovascularization by human neutrophil peptides (alpha-defensins): a link between inflammation and angiogenesis. FASEB J 2004; 18(11):1306-8.10.1096/fj.03-1009fje15208269 Search in Google Scholar

26. Xu N, Wang YS, Pan WB, Xiao B, Wen YJ, Chen XC et al. Human alpha-defensin-1 inhibits growth of human lung adenocarcinoma xenograft in nude mice. Mol Cancer Ther 2008; 7(6):1588-97.10.1158/1535-7163.MCT-08-001018566229 Search in Google Scholar

27. Jin, G.; Weinberg, A. Human antimicrobial peptides and cancer. Semin Cell Dev Biol 2019; 88:156-162.10.1016/j.semcdb.2018.04.00629694838 Search in Google Scholar

28. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 2003; 3(9):710-20.10.1038/nri118012949495 Search in Google Scholar

29. Sun CQ, Arnold RS, Hsieh CL, Dorin JR, Lian F, Li Z et al. Discovery and mechanisms of host defense to oncogenesis: targeting the β-defensin-1 peptide as a natural tumor inhibitor. Cancer Biol Ther 2019; 20(6):774-86.10.1080/15384047.2018.1564564660599230900935 Search in Google Scholar

30. Cutone A, Rosa L, Ianiro G, Lepanto MS, Bonaccorsi di Patti MC, Valenti P et al. Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules 2020; 10(3):456.10.3390/biom10030456717531132183434 Search in Google Scholar

31. Zhang Y, Nicolau A, Lima CF, Rodrigues LR. Bovine lactoferrin induces cell cycle arrest and inhibits mTOR signaling in breast cancer cells. Nutr Cancer 2014; 66(8):1371-85.10.1080/01635581.2014.95626025356800 Search in Google Scholar

32. Barragán-Cárdenas A, Urrea-Pelayo M, Niño-Ramírez VA, Umaña-Pérez A, Paul Vernot J, Parra-Giraldo CM et al. Selective cytotoxic effect against the MDA-MB-468 breast cancer cell line of the antibacterial palindromic peptide derived from bovine lactoferricin. RSC Adv 2020; 10:17593-601.10.1039/D0RA02688C905360835515633 Search in Google Scholar

33. Insuasty-Cepeda DS, Barragán-Cárdenas AC, Ochoa- Zarzosa A, López-Meza JE, Fierro-Medina R, García- Castañeda JE et al. Peptides derived from (RRWQWRMKKLG)2-K-Ahx induce selective cellular death in breast cancer cell lines through apoptotic pathway. Int J Mol Sci 2020; 21(12):4550.10.3390/ijms21124550735295232604743 Search in Google Scholar

34. Vargas Casanova Y, Rodríguez Guerra JA, Umaña Pérez YA, Leal Castro AL, Almanzar Reina G, García Castañeda JE et al. Antibacterial synthetic peptides derived from bovine lactoferricin exhibit cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines. Molecules 2017; 22(10):1641.10.3390/molecules22101641615143728961215 Search in Google Scholar

35. Chen X, Zou X, Qi G, Tang Y, Guo Y, Si J et al. Roles and mechanisms of human cathelicidin LL-37 in cancer. Cell Physiol Biochem 2018; 47(3):1060-73.10.1159/00049018329843147 Search in Google Scholar

36. Chen X, Ji S, Si J, Zhang X, Wang X, Guo Y et al. Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis. Mol Med Rep 2020; 22(6):5243-50.10.3892/mmr.2020.11629764699233174023 Search in Google Scholar

37. Bruns H, Büttner M, Fabri M, Mougiakakos D, Bittenbring JT, Hoffmann M et al. Vitamin D-dependent induction of cathelicidin in human macrophages results in cytotoxicity against high-grade B cell lymphoma. Sci Transl Med 2015; 7:282ra47.10.1126/scitranslmed.aaa323025855493 Search in Google Scholar

38. Gambade A, Zreika S, Guéguinou M, Chourpa I, Fromont G, Bouchet AM et al. Activation of TRPV2 and BKCa channels by the LL-37 enantiomers stimulates calcium entry and migration of cancer cells. Oncotarget 2016; 7(17):23785-800.10.18632/oncotarget.8122502966326993604 Search in Google Scholar

39. Chen J, Shin VY, Ho JC, Siu MT, Cheuk IW, Kwong A. Functional implications of cathelicidin antimicrobial protein in breast cancer and tumor-associated macrophage microenvironment. Biomolecules 2020; 10(5):688.10.3390/biom10050688727777932365569 Search in Google Scholar

40. Conlon JM, Mechkarska M, Lukic ML, Flatt PR. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014; 57:67-77.10.1016/j.peptides.2014.04.01924793775 Search in Google Scholar

41. Wang C, Li HB, Li S, Tian LL, Shang DJ. Antitumor effects and cell selectivity of temporin-1CEa, an antimicrobial peptide from the skin secretions of the Chinese brown frog (Rana chensinensis). Biochimie 2012; 94(2):434-41.10.1016/j.biochi.2011.08.01121871946 Search in Google Scholar

42. Wang C, Tian LL, Li S, Li HB, Zhou Y, Wang H et al. Rapid cytotoxicity of antimicrobial peptide temporin- 1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One 2013; 8(4):e60462.10.1371/journal.pone.0060462361842523577112 Search in Google Scholar

43. Wang C, Dong S, Zhang L, Zhao Y, Huang L, Gong X et al. Cell surface binding, uptaking and anticancer activity of L-K6, a lysine/leucine-rich peptide, on human breast cancer MCF-7 cells. Sci Rep 2017; 7(1):8293.10.1038/s41598-017-08963-2555790128811617 Search in Google Scholar

44. Wang C, Huang L, Li R, Wang Y, Wu X, Shang D. Synergistic therapy of doxorubicin with cationic anticancer peptide L-K6 reverses multidrug resistance in cancer cells in vitro via P-glycoprotein inhibition. bioRxiv 2021; 429308.10.1101/2021.02.02.429308 Search in Google Scholar

45. Ghavami S, Asoodeh A, Klonisch T, Halayko AJ, Kadkhoda K, Kroczak TJ et al. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med 2008; 12(3):1005-22.10.1111/j.1582-4934.2008.00129.x440114418494941 Search in Google Scholar

46. Attoub S, Arafat H, Mechkarska M, Conlon JM. Antitumor activities of the host-defense peptide hymenochirin- 1B. Regul Pept 2013; 187:51-6.10.1016/j.regpep.2013.10.00624185042 Search in Google Scholar

47. Zhang Y, Sun C, Xiao G, Gu Y. Host defense peptide Hymenochirin-1B induces lung cancer cell apoptosis and cell cycle arrest through the mitochondrial pathway. Biochem Biophys Res Commun 2019; 512(2):269-75.10.1016/j.bbrc.2019.03.02930885438 Search in Google Scholar

48. Serra I, Scorciapino MA, Manzo G, Casu M, Rinaldi AC, Attoub S et al. Conformational analysis and cytotoxic activities of the frog skin host-defense peptide, hymenochirin- 1Pa. Peptides 2014; 61:114-21.10.1016/j.peptides.2014.08.01725241629 Search in Google Scholar

49. Pantic J, Guilhaudis L, Musale V, Attoub S, Lukic ML, Mechkarska M et al. Immunomodulatory, insulinotropic, and cytotoxic activities of phylloseptins and plasticin- TR from the Trinidanian leaf frog Phyllomedusa trinitatis. J Pept Sci 2019; 25(4):e3153.10.1002/psc.315330734396 Search in Google Scholar

50. Conlon JM, Mechkarska M, Prajeep M, Arafat K, Zaric M, Lukic ML et al. Transformation of the naturally occurring frog skin peptide, alyteserin-2a into a potent, non-toxic anti-cancer agent. Amino Acids 2013; 44(2):715-23.10.1007/s00726-012-1395-722965637 Search in Google Scholar

51. Mechkarska M, Attoub S, Sulaiman S, Pantic J, Lukic ML, Conlon JM. Anti-cancer, immunoregulatory, and antimicrobial activities of the frog skin host-defense peptides pseudhymenochirin-1Pb and pseudhymenochirin- 2Pa. Regul Pept 2014; 194-195:69-76.10.1016/j.regpep.2014.11.00125447194 Search in Google Scholar

52. Pantic JM, Jovanovic IP, Radosavljevic GD, Gajovic NM, Arsenijevic NN, Conlon JM et al. The frog skin host-defense peptide frenatin 2.1S enhances recruitment, activation and tumoricidal capacity of NK cells. Peptides 2017; 93:44-50.10.1016/j.peptides.2017.05.00628526557 Search in Google Scholar

53. Hilchie AL, Sharon AJ, Haney EF, Hoskin DW, Bally MB, Franco OL et al. Mastoparan is a membranolytic anti-cancer peptide that works synergistically with gemcitabine in a mouse model of mammary carcinoma. Biochim Biophys Acta 2016; 1858(12):3195-204.10.1016/j.bbamem.2016.09.021509702927693190 Search in Google Scholar

54. Jeong YJ, Choi Y, Shin JM, Cho HJ, Kang JH, Park KK et al.. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem Toxicol 2014; 68:218-25.10.1016/j.fct.2014.03.02224675423 Search in Google Scholar

55. Yang Y, Zhang H, Wanyan Y, Liu K, Lv T, Li M et al. Effect of hydrophobicity on the anticancer activity of fatty-acyl-conjugated CM4 in breast cancer cells. ACS Omega 2020; 5(34):21513-23.10.1021/acsomega.0c02093746938432905373 Search in Google Scholar

56. Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24(1):21.10.1186/s12929-017-0328-x535982728320393 Search in Google Scholar

57. Hilchie AL, Doucette CD, Pinto DM, Patrzykat A, Douglas S, Hoskin DW. Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts. Breast Cancer Res 2011; 13(5):R102.10.1186/bcr3043326221522023734 Search in Google Scholar

58. Vernen F, Harvey PJ, Dias SA, Veiga AS, Huang YH, Craik DJ et al. Characterization of tachyplesin peptides and their cyclized analogues to improve antimicrobial and anticancer properties. Int J Mol Sci 2019; 20(17):4184.10.3390/ijms20174184674708731455019 Search in Google Scholar

59. Kuzmin DV, Emelianova AA, Kalashnikova MB, Panteleev PV, Balandin SV, Serebrovskaya EO et al. Comparative in vitro study on cytotoxicity of recombinant β- hairpin peptides. Chem Biol Drug Des 2018; 91(1):294-303.10.1111/cbdd.1308128815904 Search in Google Scholar

60. Shaala LA, Youssef DTA, Ibrahim SRM, Mohamed GA. Callyptide A, a new cytotoxic peptide from the Red Sea marine sponge Callyspongia species. Nat Prod Res 2016; 30(24):2783-90.10.1080/14786419.2016.115557726946937 Search in Google Scholar

61. E-Kobon T, Thongararm P, Roytrakul S, Meesuk L, Chumnanpuen P. Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions. Comput Struct Biotechnol J 2015; 14:49-57.10.1016/j.csbj.2015.11.005470661126862373 Search in Google Scholar

62. He S, Mao X, Zhang T, Guo X, Ge Y, Ma C et al. Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). J Microencapsul 2016; 33(4):344-54.10.1080/02652048.2016.119490427292913 Search in Google Scholar

63. Figueira TN, Oliveira FD, Almeida I, Mello ÉO, Gomes VM, Castanho MARB et al. Challenging metastatic breast cancer with the natural defensin PvD1. Nanoscale 2017; 9(43):16887-99.10.1039/C7NR05872A Search in Google Scholar

64. Pandurangi SR, Karwa A, Sagaram SU, Shah D. Medicago sativa defensin 1 (MsDef1), a natural tumor targeted sensitizer for improving chemotherapy: Translation from Anti-Fungal Agent to Potential Anti-Cancer. Agentio Rxiv 2021; 43112.10.1101/2021.02.13.431112 Search in Google Scholar

65. Fang XY, Chen W, Fan JT, Song R, Wang L, Gu YH et al. Plant cyclopeptide RA-V kills human breast cancer cells by inducing mitochondria-mediated apoptosis through blocking PDK1-AKT interaction. Toxicology and Applied Pharmacology 2013; 267(1):95-103.10.1016/j.taap.2012.12.01023274515 Search in Google Scholar

66. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 2006; 18:24–30.10.1016/j.coi.2005.11.00416337365 Search in Google Scholar

67. Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 2014; 11:509–24.10.1038/nrclinonc.2014.11125001465 Search in Google Scholar

68. Tian Y, Hu Q, Zhang R, Zhou B, Xie D, Wang Y et al. Rational design of innate defense regulator peptides as tumor vaccine adjuvants. NPJ Vaccines 2021; 6(1):75.10.1038/s41541-021-00334-3813801334016984 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other