Acceso abierto

Expression of Cytokines and Cytokine Receptors-Genes in Patients with Different Forms of Thyroid Pathology in Ukrainian Population


Cite

1. Ragusa F, Fallahi P, Elia G, Gonnella D, Paparo SR, Giusti C, et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab. 2019 Dec;33(6):101367.10.1016/j.beem.2019.10136731812326 Search in Google Scholar

2. Sviridenko NY, Bessmertnaya EG, Belovalova IM, Mikheenkov AA, Sheremeta MS, Nikankina LV, Malysheva NM. Autoantibodies, immunoglobulins and cytokine profile in patients with graves’ disease and Graves’ orbitopathy. Probl Endokrinol (Mosk). 2020;66 (5):15-2310.14341/probl1254433369369 Search in Google Scholar

3. Degen A, Krynytska I, Kamyshnyi A. Changes in the transcriptional activity of the entero-insular axis genes in streptozotocin-induced diabetes and after the administration of TNF-α non-selective blockers. Endocrine Regulations. 2020; 54(3):160-171.10.2478/enr-2020-001932857721 Search in Google Scholar

4. Kamyshna II, Pavlovych LB, Maslyanko VA, Kamyshnyi AM. Analysis of the transcriptional activity of genes of neuropeptides and their receptors in the blood of patients with thyroid pathology. J Med Life. 2021;14(2): 243-249.10.25122/jml-2020-0183816913734104248 Search in Google Scholar

5. Bilous II, Korda MM, Krynytska IY, Kamyshnyi AM. Nerve impulse transmission pathway-focused genes expression analysis in patients with primary hypothyroidism and autoimmune thyroiditis. Endocr Regul. 2020;54(2):109-18.10.2478/enr-2020-001332597152 Search in Google Scholar

6. Bilous I., Pavlovych L., Krynytska I., Marushchak M., Kamyshnyi A. Apoptosis and Cell Cycle Pathway-Focused Genes Expression Analysis in Patients with Different Forms of Thyroid Pathology. Open Access Macedonian Journal of Medical Sciences. 2020;8(B): 1-9.10.3889/oamjms.2020.4760 Search in Google Scholar

7. Bilous I., Pavlovych L, Kamyshnyi A. Primary hypothyroidism and autoimmune thyroiditis alter the transcriptional activity of genes regulating neurogenesis in the blood of patients. Endocr Regul. 2021 Jan; 55(1):101–111.10.2478/enr-2021-000233600668 Search in Google Scholar

8. Cheng CW, Wu CZ, Tang KT, Fang WF, Lin JD. Simultaneous measurement of twenty-nine circulating cytokines and growth factors in female patients with overt autoimmune thyroid diseases. Autoimmunity. 2020;53(5):261-269.10.1080/08916934.2020.175596532338082 Search in Google Scholar

9. Fallahi P, Ferrari SM, Ragusa F, Ruffilli I, Elia G, Paparo SR, Antonelli A. Th1 Chemokines in Autoimmune Endocrine Disorders. J Clin Endocrinol Metab. 2020;105(4):dgz289.10.1210/clinem/dgz28931863667 Search in Google Scholar

10. Martin TC, Ilieva KM, Visconti A, Beaumont M, Kiddle SJ, Dobson RJB, et al. Dysregulated Antibody, Natural Killer Cell and Immune Mediator Profiles in Autoimmune Thyroid Diseases. Cells. 2020;9(3):665.10.3390/cells9030665714064732182948 Search in Google Scholar

11. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, et al. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Endocr Pract. 2012;18(6):988-1028.10.4158/EP12280.GL23246686 Search in Google Scholar

12. Koval HD, Chopyak VV, Kamyshnyi OM, Kurpisz MK. Transcription regulatory factor expression in T-helper cell differentiation pathway in eutopic endometrial tissue samples of women with endometriosis associated with infertility. Cent Eur J Immunol. 2018;43(1):90-6.10.5114/ceji.2018.74878592717829736151 Search in Google Scholar

13. Zherebiatiev A. Kamyshnyi A. Expression levels of proinflammatory cytokines and NLRP3 inflammasome in an experimental model of oxazolone-induced colitis. Iranian Journal of Allergy, Asthma and Immunology. 2016;15(1):39-45. Search in Google Scholar

14. Nosulenko IS, Voskoboynik OY, Berest GG, Safronyuk SL, Kovalenko SI, Kamyshnyi OM, Polishchuk NM, Sinyak RS, Katsev AV. Synthesis and Antimicrobial Activity of 6-Thioxo-6,7-dihydro-2H-[1,2,4]triazino[2, 3-c]-quinazolin-2-one Derivatives. Sci Pharm. 2014;82 (3):483-500.10.3797/scipharm.1402-10431815125853063 Search in Google Scholar

15. Wu W, Ren F, Guo M, Yang J, Xiao Y, Liu W. Increased expression of CX3CL1 and CX3CR1 in papillary thyroid carcinoma. Histol Histopathol. 2020;35(10): 1189-1196. Search in Google Scholar

16. Lee M, Lee Y, Song J, Lee J, Chang SY. Tissue-specific Role of CX3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw. 2018 Feb;18(1):e5.10.4110/in.2018.18.e5583312429503738 Search in Google Scholar

17. Hamon P, Loyher PL, Baudesson de Chanville C, Licata F, Combadiere C, Boissonnas A. CX3CR1-dependent endothelial margination modulates Ly6C(high) monocyte systemic deployment upon inflammation in mice. Blood. 2017 Mar 9;129(10):1296-307.10.1182/blood-2016-08-73216428011675 Search in Google Scholar

18. Mousavi A. CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targetedtherapy. Immunol Lett. 2020;217:91-115.10.1016/j.imlet.2019.11.00731747563 Search in Google Scholar

19. García-Cuesta EM, Santiago CA, Vallejo-Díaz J, Juarranz Y, Rodríguez-Frade JM, Mellado M. The Role of the CXCL12/CXCR4/ACKR3 Axis in Autoimmune Diseases. Front Endocrinol (Lausanne). 2019 Aug 27;10:585.10.3389/fendo.2019.00585671845631507535 Search in Google Scholar

20. Armengol MP, Cardoso-Schmidt CB, Fernandez M, Ferrer X, Pujol-Borrell R, Juan M. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol. 2003 Jun 15;170(12):6320-8.10.4049/jimmunol.170.12.632012794165 Search in Google Scholar

21. Luty J, Ruckemann-Dziurdzińska K, Witkowski JM, Bryl E. Immunological aspects of autoimmune thyroid disease - Complex interplay between cells and cytokines. Cytokine. 2019;116:128-133.10.1016/j.cyto.2019.01.00330711852 Search in Google Scholar

22. Xiong Z, Sun Y, Wu J, Niu F, Jin T, Li B. Genetic polymorphisms in IL1R1 and IL1R2 are associated with susceptibility to thyroid cancer in the Chinese Han population. J Gene Med. 2019;21(6):e3093.10.1002/jgm.309331021479 Search in Google Scholar

23. Yan H, Hong Y, Cai Y. Association between FAS gene -670 A/G and -1377 G/A polymorphisms and the risk of autoimmune diseases: a meta-analysis. Biosci Rep. 2020;40(1): BSR20191197.10.1042/BSR20191197694465731840751 Search in Google Scholar

24. Sun L, Zhang X, Dai F, Shen J, Ren C, Zuo C, et al. Elevated interleukin-1beta in peripheral blood mononuclear cells contributes to the pathogenesis of autoimmune thyroid diseases, especially of Hashimoto thyroiditis. Endocr Res. 2016;41(3):185-92.10.3109/07435800.2015.112443926864865 Search in Google Scholar

25. Kristensen B, Hegedus L, Lundy SK, Brimnes MK, Smith TJ, Nielsen CH. Characterization of Regulatory B Cells in Graves’ Disease and Hashimoto’s Thyroiditis. PLoS One. 2015;10(5):e0127949.10.1371/journal.pone.0127949444633526016954 Search in Google Scholar

26. Gerenova J, Stanilova S. IL-12B and IL-10 gene polymorphisms in the development of Hashimoto’s thyroiditis. Int J Immunogenet. 2016;43(6):397-403.10.1111/iji.1229327774749 Search in Google Scholar

27. Inoue N, Watanabe M, Wada M, Morita M, Hidaka Y, Iwatani Y. IL-10-592A/C polymorphism is associated with severity of Hashimoto’s disease. Cytokine. 2013;64(1):370-4.10.1016/j.cyto.2013.05.01423757290 Search in Google Scholar

28. Kagawa T, Watanabe M, Inoue N, Otsu H, Saeki M, Katsumata Y, et al. Increases of microRNA let-7e in peripheral blood mononuclear cells in Hashimoto’s disease. Endocr J. 2016 Apr 25;63(4):375-80.10.1507/endocrj.EJ15-057726821743 Search in Google Scholar

29. Stożek K, Grubczak K, Marolda V, Eljaszewicz A, Moniuszko M, Bossowski A. Lower proportion of CD19+IL-10+ and CD19+CD24+CD27+ but not CD1d+CD5+CD19+CD24+CD27+ IL-10+ B cells in children with autoimmune thyroid diseases. Autoimmunity. 2020;53(1):46-55.10.1080/08916934.2019.169769031790305 Search in Google Scholar

30. Huang H, Fang M, Jostins L, Umicevic Mirkov M, Boucher G, Anderson CA, et al. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature. 2017;547(7662):173-8.10.1038/nature22969551151028658209 Search in Google Scholar

31. Zhang GQ, Jiao Q, Shen CT, Song HJ, Zhang HZ, Qiu ZL, Luo QY. Interleukin 6 regulates the expression of programmed cell death ligand 1 in thyroid cancer. Cancer Sci. 2021;112(3):997-1010.10.1111/cas.14752793580033247999 Search in Google Scholar

32. Kaur S, Bansal Y, Kumar R, Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg Med Chem. 2020;28(5):115327.10.1016/j.bmc.2020.11532731992476 Search in Google Scholar

33. Kristensen B. Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls. Dan Med J. 2016 Feb;63(2):B5177. Search in Google Scholar

34. Sieminska L, Wojciechowska C, Kos-Kudla B, Marek B, Kajdaniuk D, Nowak M, et al. Serum concentrations of leptin, adiponectin, and interleukin-6 in postmenopausal women with Hashimoto’s thyroiditis. Endokrynol Pol. 2010;61(1):112-6. Search in Google Scholar

35. Ferreira RC, Freitag DF, Cutler AJ, Howson JM, Rainbow DB, Smyth DJ, et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 2013;9(4):e1003444.10.1371/journal.pgen.1003444361709423593036 Search in Google Scholar

36. Ferrari SM, Fallahi P, Elia G, Ragusa F, Camastra S, Paparo SR, Giusti C, Gonnella D, Ruffilli I, Shoenfeld Y, Antonelli A. Novel therapies for thyroid autoimmune diseases: An update. Best Pract Res Clin Endocrinol Metab. 2020;34(1):101366.10.1016/j.beem.2019.10136631813786 Search in Google Scholar

37. Marinou I, Healy J, Mewar D, Moore DJ, Dickson MC, Binks MH, et al. Association of interleukin-6 and interleukin-10 genotypes with radiographic damage in rheumatoid arthritis is dependent on autoantibody status. Arthritis Rheum. 2007;56(8):2549-56.10.1002/art.22814243541617665434 Search in Google Scholar

38. Davis SM, Collier LA, Leonardo CC, Seifert HA, Ajmo CT, Jr., Pennypacker KR. Leukemia Inhibitory Factor Protects Neurons from Ischemic Damage via Upregulation of Superoxide Dismutase 3. Mol Neurobiol. 2017;54(1):608-22.10.1007/s12035-015-9587-2502663326746670 Search in Google Scholar

39. Davis SM, Collier LA, Goodwin S, Lukins DE, Powell DK, Pennypacker KR. Efficacy of leukemia inhibitory factor as a therapeutic for permanent large vessel stroke differs among aged male and female rats. Brain Res. 2019;1707:62-73.10.1016/j.brainres.2018.11.017681430430445025 Search in Google Scholar

40. Ren SG, Seliktar J, Li X, Hershman JM, Braunstein GD, Melmed S. In vivo and in vitro regulation of thyroid leukemia inhibitory factor (LIF): marker of hypothyroidism. J Clin Endocrinol Metab. 1999;84(8):2883-7.10.1210/jc.84.8.2883 Search in Google Scholar

41. Aghajanova L, Stavreus-Evers A, Lindeberg M, Landgren BM, Sparre LS, Hovatta O. Thyroid-stimulating hormone receptor and thyroid hormone receptors are involved in human endometrial physiology. Fertil Steril. 2011;95(1):230-7.10.1016/j.fertnstert.2010.06.07920691434 Search in Google Scholar

42. Shan L, Zhou Y, Peng S, Wang X, Shan Z, Teng W. Implantation failure in rats with subclinical hypothyroidism is associated with LIF/STAT3 signaling. Endocr Connect. 2019;8(6):718-27.10.1530/EC-19-0185654730731063977 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other