Cite

1. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005; 23: 479–90.10.1016/j.immuni.2005.09.015 Search in Google Scholar

2. Yanagisawa K, Takagi T, Tsukamoto T, Tetsuka T, Tominaga S. Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1. FEBS Lett. 1993; 318(1): 83-7.10.1016/0014-5793(93)81333-U Search in Google Scholar

3. Kuroiwa K, Li H, Tago K, Iwahana H, Yanagisawa K, Komatsu N,et al. Construction of ELISA system to quantify human ST2 protein in sera of patients. Hybridoma. 2000; 19(2): 151-9.10.1089/0272457005003119410868795 Search in Google Scholar

4. Liu X, Hammel M, He Y, Tainer JA, Jeng US, Zhang L, et al. Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci USA. 2013; 110(37): 14918-23.10.1073/pnas.1308651110377379823980170 Search in Google Scholar

5. Ali S, Huber M, Kollewe C, Bischoff SC, Falk W, Martin MU. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci U S A. 2007; 104: 18660–5.10.1073/pnas.0705939104214183318003919 Search in Google Scholar

6. Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 2018; 281(1): 154-168.10.1111/imr.1261929247993 Search in Google Scholar

7. Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 2007; 179: 2551–5.10.4049/jimmunol.179.4.255117675517 Search in Google Scholar

8. Andrade MV, Iwaki S, Ropert C, Gazzinelli RT, Cunha- Melo JR, Beaven MA. Amplification of cytokine production through synergistic activation of NFAT and AP- 1 following stimulation of mast cells with antigen and IL-33. Eur J Immunol. 2011; 41(3): 760-72.10.1002/eji.201040718308525521308681 Search in Google Scholar

9. Dunne A, O’Neill LA. The interleukin-1 receptor/Tolllike receptor superfamily: signal transduction during inflammation and host defense. Sci STKE. 2003; 2003(171):re3.10.1126/stke.2003.171.re312606705 Search in Google Scholar

10. Kakkar R, Hei H, Dobner S, Lee RT. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J Biol Chem. 2012; 287(9): 6941-8.10.1074/jbc.M111.298703330731322215666 Search in Google Scholar

11. Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010; 10(2): 103-1010.1038/nri269220081870 Search in Google Scholar

12. Oboki K, Ohno T, Kajiwara N, Arae K, Morita H, Ishii A, et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc Natl Acad Sci U S A. 2010; 107:18581–6.10.1073/pnas.1003059107297296620937871 Search in Google Scholar

13. Kamijo S, Takeda H, Tokura T, Suzuki M, Inui K, Hara M, et al. IL-33-mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation. J Immunol. 2013; 190:4489–9910.4049/jimmunol.120121223547117 Search in Google Scholar

14. Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol. 2018; 9:2596.10.3389/fimmu.2018.02596625596530515150 Search in Google Scholar

15. Gadani SP, Walsh JT, Smirnov I, Zheng J, Kipnis J. The glia-derived alarmin IL-33 orchestrates the immune response and promotes recovery following CNS injury. Neuron. 2015; 85:703–9.10.1016/j.neuron.2015.01.01325661185 Search in Google Scholar

16. Yang Y, Liu H, Zhang H, Ye Q, Wang J. ST2/IL-33- dependent microglial response limits acute ischemic brain injury. J Neurosci. 2017; 37:4692–704.10.1523/JNEUROSCI.3233-16.2017542656428389473 Search in Google Scholar

17. Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC, et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A. 2016; 113(19): E2705-13.10.1073/pnas.1604032113486847827091974 Search in Google Scholar

18. Wicher G, Wallenquist U, Lei Y, Enoksson M, Li X, Fuchs B, et al. Interleukin-33 promotes recruitment of microglia/macrophages in response to traumatic brain injury. J Neurotrauma. 2017; 34(22): 3173–82.10.1089/neu.2016.490028490277 Search in Google Scholar

19. Cao K, Liao X, Lu J, Yao S, Wu F, Zhu X, et al. IL- 33/ST2 plays a critical role in endothelial cell activation and microglia-mediated neuroinflammation modulation. J Neuroinflammation. 2018; 15(1): 136.10.1186/s12974-018-1169-6593593629728120 Search in Google Scholar

20. Dohi E, Choi EY, Rose IVL, Murata AS, Chow S, Niwa M, et al. Behavioral Changes in Mice Lacking Interleukin- 33. eNeuro. 2017; 4(6).10.1523/ENEURO.0147-17.2017578805529379874 Search in Google Scholar

21. Vainchtein ID, Chin G, Cho FS, Kelley KW, Miller JG, Chien EC, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development. Science. 2018; 359(6381): 1269-1273.10.1126/science.aal3589607013129420261 Search in Google Scholar

22. Carlock C, Wu J, Shim J, Moreno-Gonzalez I, Pitcher MR, Hicks J, et al. Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice. Transl Psychiatry. 2017; 7(7): e1164.10.1038/tp.2017.142553812228675392 Search in Google Scholar

23. Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, et al. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues,lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol. 2012; 188(7): 3488-95.10.4049/jimmunol.110197722371395 Search in Google Scholar

24. Natarajan C, Yao SY, Sriram S. TLR3 Agonist Poly-IC Induces IL-33 and Promotes Myelin Repair. PLoS One. 2016; 11(3): e0152163.10.1371/journal.pone.0152163481155627022724 Search in Google Scholar

25. Jiang HR, Milovanović M, Allan D, Niedbala W, Besnard AG, Fukada SY, et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol. 2012; 42(7): 1804-14.10.1002/eji.20114194722585447 Search in Google Scholar

26. Allan D, Fairlie-Clarke KJ, Elliott C, Schuh C, Barnett SC, Lassmann H, et al. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol Commun. 2016; 4(1): 75.10.1186/s40478-016-0344-1496087727455844 Search in Google Scholar

27. Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A. Glia maturation factor induces interleukin- 33 release from astrocytes: implications for neurodegenerative diseases. J Neuroimmune Pharmacol. 2013; 8(3): 643-50.10.1007/s11481-013-9439-7366041523397250 Search in Google Scholar

28. Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem Biophys Res Commun. 2012; 425(3): 534-9. Search in Google Scholar

29. Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol. 2014; 14(7): 463-477.10.1038/nri370524962261 Search in Google Scholar

30. Luterman JD, Haroutunian V, Yemul S, et al. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol. 2000; 57(8): 1153-1160.10.1001/archneur.57.8.115310927795 Search in Google Scholar

31. Serrano-Pozo A, Mielke ML, Gómez-Isla T, et al. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am J Pathol. 2011; 179(3): 1373-1384.10.1016/j.ajpath.2011.05.047315718721777559 Search in Google Scholar

32. McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol. 2013; 126(4): 479-497.10.1007/s00401-013-1177-724052108 Search in Google Scholar

33. Holmes C, Cotterell D. Role of infection in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2009; 23(12): 993-1002.10.2165/11310910-000000000-0000019958038 Search in Google Scholar

34. Holmes C. Review: systemic inflammation and Alzheimer’s disease. Neuropathol Appl Neurobiol. 2013; 39(1): 51-68.10.1111/j.1365-2990.2012.01307.x23046210 Search in Google Scholar

35. Su X, Federoff HJ. Immune responses in Parkinson’s disease: interplay between central and peripheral immune systems. Biomed Res Int. 2014; 2014:275178.10.1155/2014/275178400507624822191 Search in Google Scholar

36. Qin L, Wu X, Block ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007; 55(5): 453-462.10.1002/glia.20467287168517203472 Search in Google Scholar

37. Erickson MA, Banks WA. Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: multiplex quantification with path analysis. Brain Behav Immun. 2011; 25(8): 1637-1648.10.1016/j.bbi.2011.06.006338949421704698 Search in Google Scholar

38. Park SM, Choi MS, Sohn NW, Shin JW. Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull. 2012; 35(9): 1546-1552.10.1248/bpb.b12-0039322975507 Search in Google Scholar

39. Biesmans S, Meert TF, Bouwknecht JA, et al. Systemic immune activation leads to neuroinflammation and sickness behavior in mice. Mediators Inflamm. 2013; 2013:271359.10.1155/2013/271359372309323935246 Search in Google Scholar

40. Tremblay MÈ, Stevens B, Sierra A, Wake H, Bessis A, Nimmerjahn A. The role of microglia in the healthy brain. J Neurosci. 2011; 31(45): 16064-16069.10.1523/JNEUROSCI.4158-11.2011663322122072657 Search in Google Scholar

41. Dubois RN, Abramson SB, Crofford L, et al. Cyclooxygenase in biology and disease. FASEB J. 1998; 12(12): 1063-1073.10.1096/fasebj.12.12.1063 Search in Google Scholar

42. Brown GC. Mechanisms of inflammatory neurodegeneration: iNOS and NADPH oxidase. Biochem Soc Trans. 2007; 35(Pt 5): 1119-1121.10.1042/BST0351119 Search in Google Scholar

43. Chapuis J, Hot D, Hansmannel F, Kerdraon O, Ferreira S, Hubans C, et al. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease. Mol Psychiatry. 2009; 14(11): 1004-16.10.1038/mp.2009.10 Search in Google Scholar

44. Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S, Zaheer A. Alzheimer’s disease: evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J Alzheimers Dis. 2014; 40(2): 297-308.10.3233/JAD-132081 Search in Google Scholar

45. Yasuoka S, Kawanokuchi J, Parajuli B, Jin S, Doi Y, Noda M, et al. Production and functions of IL-33 in the central nervous system. Brain Res. 2011; 1385:8–17.10.1016/j.brainres.2011.02.045 Search in Google Scholar

46. Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH. Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry. 2001; 50:743–749.10.1016/S0006-3223(01)01209-4 Search in Google Scholar

47. Italiani P, Puxeddu I, Napoletano S, et al. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: new markers of disease progression?. J Neuroinflammation. 2018; 15(1): 342.10.1186/s12974-018-1376-1629217930541566 Search in Google Scholar

48. Richardson JA, Burns DK. Mouse models of Alzheimer’s disease: a quest for plaques and tangles. ILAR J. 2002; 43: 89–99.10.1093/ilar.43.2.8911917160 Search in Google Scholar

49. Saresella M, Marventano I, Piancone F, et al. IL-33 and its decoy sST2 in patients with Alzheimer’s disease and mild cognitive impairment. J Neuroinflammation. 2020; 17(1): 174.10.1186/s12974-020-01806-4727608832505187 Search in Google Scholar

50. Liang CS, Su KP, Tsai CL, et al. The role of interleukin- 33 in patients with mild cognitive impairment and Alzheimer’s disease. Alzheimers Res Ther. 2020; 12(1): 86.10.1186/s13195-020-00652-z736733032678011 Search in Google Scholar

51. Gotz J, Ittner LM. Animal models of Alzheimer’s disease and frontotemporal dementia. Rev Neurosci 2008; 9: 532–54410.1038/nrn242018568014 Search in Google Scholar

52. Obulesu M, Rao DM. DNA damage and impairment of DNA repair in Alzheimer’s disease. Int J Neurosci 2010; 120: 397–403.10.3109/0020745090341113320504209 Search in Google Scholar

53. Hou Y, Song H, Croteau DL, Akbari M, Bohr VA. Genome instability in Alzheimer disease. Mech Ageing Dev 2017; 161: 83–94.10.1016/j.mad.2016.04.005519591827105872 Search in Google Scholar

54. Malpass K. Alzheimer disease: DNA damage provides novel and powerful biomarkers of Alzheimer disease. Nat Rev Neurol. 2012; 8: 178.10.1038/nrneurol.2012.3522391481 Search in Google Scholar

55. Inoue K, Rispoli J, Kaphzan H, Klann E, Chen EI, Kim J et al. Macroautophagy deficiency mediates age-dependent neurodegeneration through a phospho-tau pathway. Mol Neurodegen. 2012; 7: 48.10.1186/1750-1326-7-48354459622998728 Search in Google Scholar

56. Bateman RJ, Munsell LY, Morris JC, Swarm R, Yarasheski KE, Holtzman DM. Human amyloid-beta synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med. 2006; 12: 856–861.10.1038/nm1438298309016799555 Search in Google Scholar

57. Pennisi M, Crupi R, Di Paola R, et al. Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in Alzheimer disease. J Neurosci Res. 2017; 95(7): 1360-1372.10.1002/jnr.2398627862176 Search in Google Scholar

58. Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci. 2014; 8:315.10.3389/fnins.2014.00315418803025339862 Search in Google Scholar

59. Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008; 9(8): 857-865.10.1038/ni.1636310147818604209 Search in Google Scholar

60. Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013; 493(7434): 674-678.10.1038/nature11729381280923254930 Search in Google Scholar

61. Rubartelli A. DAMP-mediated activation of NLRP3- inflammasome in brain sterile inflammation: the fine line between healing and neurodegeneration. Front Immunol. 2014; 5:99.10.3389/fimmu.2014.00099395612224672523 Search in Google Scholar

62. Wu GF, Alvarez E. The immunopathophysiology of multiple sclerosis. Neurol Clin. 2011; 29(2): 257-278.10.1016/j.ncl.2010.12.009 Search in Google Scholar

63. Wang K, Song F, Fernandez-Escobar A, Luo G, Wang JH, Sun Y. The Properties of Cytokines in Multiple Sclerosis: Pros and Cons. Am J Med Sci. 2018; 356(6): 552-560.10.1016/j.amjms.2018.08.018 Search in Google Scholar

64. Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000; 47(6): 707-717.10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q Search in Google Scholar

65. Steinman L, Zamvil SS. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann Neurol. 2006; 60(1): 12-21.10.1002/ana.20913 Search in Google Scholar

66. Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB. T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol. 2002; 20:101-123.10.1146/annurev.immunol.20.081701.141316 Search in Google Scholar

67. Kouchaki E, Tamtaji OR, Dadgostar E, Karami M, Nikoueinejad H, Akbari H. Correlation of Serum Levels of IL-33, IL-37, Soluble Form of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), and Circulatory Frequency of VEGFR2-expressing Cells with Multiple Sclerosis Severity. Iran J Allergy Asthma Immunol. 2017; 16(4): 329-337 Search in Google Scholar

68. Zhang F, Tossberg JT, Spurlock CF, Yao SY, Aune TM, Sriram S. Expression of IL-33 and its epigenetic regulation in Multiple Sclerosis. Ann Clin Transl Neurol. 2014; 1(5): 307-318.10.1002/acn3.47 Search in Google Scholar

69. Alsahebfosoul F, Rahimmanesh I, Shajarian M, et al. Interleukin- 33 plasma levels in patients with relapsing-remitting multiple sclerosis [published correction appears in Biomol Concepts. 2017;]. Biomol Concepts. 2017; 8(1): 55-60.10.1515/bmc-2016-0026 Search in Google Scholar

70. Christophi GP, Gruber RC, Panos M, Christophi RL, Jubelt B, Massa PT. Interleukin-33 upregulation in peripheral leukocytes and CNS of multiple sclerosis patients. Clin Immunol 2012; 142: 308–19.10.1016/j.clim.2011.11.007 Search in Google Scholar

71. Kanda T. Interleukin-33/suppression of tumorigenicity 2 system: can it be a future therapeutic target for neuroimmunological disorders? Clin Exp Neuroimmunol. 2013; 4: 255–6 Search in Google Scholar

72. Wang S, Ding L, Liu S-S, Wang C, Leng R-X, Chen GM, et al. IL-33: a potential therapeutic target in autoimmune diseases. J Investig Med. 2012; 60: 1151–6.10.2310/JIM.0b013e31826d8fcb Search in Google Scholar

73. Li M, Li Y, Liu X, Gao X, Wang Y. IL-33 blockade suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol. 2012; 247(1-2): 25-31.10.1016/j.jneuroim.2012.03.016 Search in Google Scholar

74. Chen H, Sun Y, Lai L, et al. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Neuroscience. 2015; 308:157-168.10.1016/j.neuroscience.2015.09.01926363151 Search in Google Scholar

75. Xiao Y, Lai L, Chen H, et al. Interleukin-33 deficiency exacerbated experimental autoimmune encephalomyelitis with an influence on immune cells and glia cells. Mol Immunol. 2018; 101:550-563.10.1016/j.molimm.2018.08.02630173119 Search in Google Scholar

76. Barbour M, Wood R, Hridi SU, et al. The therapeutic effect of anti-CD52 treatment in murine experimental autoimmune encephalomyelitis is associated with altered IL-33 and ST2 expression levels. J Neuroimmunol. 2018; 318:87-96.10.1016/j.jneuroim.2018.02.01229526407 Search in Google Scholar

77. Zhao X, Zhang X, Lv Y, et al. Matrine downregulates IL-33/ST2 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis. Immunol Lett. 2016; 178:97-104.10.1016/j.imlet.2016.08.00727562326 Search in Google Scholar

78. Jafarzadeh A, Mohammadi-Kordkhayli M, Ahangar- Parvin R, et al. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. J Neuroimmunol. 2014; 276(1-2):80-88.10.1016/j.jneuroim.2014.08.61425175065 Search in Google Scholar

79. Finlay CM, Stefanska AM, Walsh KP, et al. Helminth Products Protect against Autoimmunity via Innate Type 2 Cytokines IL-5 and IL-33, Which Promote Eosinophilia. J Immunol. 2016; 196(2):703-714.10.4049/jimmunol.150182026673140 Search in Google Scholar

80. Russi AE, Ebel ME, Yang Y, Brown MA. Male-specific IL-33 expression regulates sex-dimorphic EAE susceptibility. Proc Natl Acad Sci U S A. 2018; 115(7): E1520-E1529.10.1073/pnas.1710401115581614029378942 Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other