Cite

1. Bone RC, Sprung CL, Sibbald WJ: Definitions for sepsis and organ failure. Crit Care Med. 1992; 20:724–72610.1097/00003246-199206000-00002Search in Google Scholar

2. Levy MM, Fink MP, Marshall JC, et al: 2001 SCCM/ESICM/ACCP/ATS/SIS International. Sepsis Definitions Conference. Intensive Care Med 2003;29: 530–53810.1007/s00134-003-1662-xSearch in Google Scholar

3. Brahm Goldstein, MD; Brett Giroir, MD; Adrienne Randolph, MD; and the Members of the International Consensus Conference on Pediatric Sepsis: International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 2005;6(1):2-810.1097/01.PCC.0000149131.72248.E6Search in Google Scholar

4. Simonsen KA, Anderson-Berry AL, Delair SF, Davies HD. Early-Onset Neonatal Sepsis. Clinical microbiology reviews.2014; 27(1):21-4710.1128/CMR.00031-13Search in Google Scholar

5. Andi L Shane, Pablo J Sanchez, Barbara J Stoll. Neonatal sepsis. Lancet 2017; 390: 1770-8010.1016/S0140-6736(17)31002-4Search in Google Scholar

6. Stoll BJ1, Hansen NI, Sánchez PJ, Faix RG, Poindexter BB et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics. 2011; 127(5):817-2610.1542/peds.2010-2217dSearch in Google Scholar

7. Nealon TJ, Mattingly SJ. Association of elevated levels of cellular lipoteichoic acids of group B streptococci with human neonatal disease. Infect. Immun. 1983; 39:1243–1251.10.1128/iai.39.3.1243-1251.1983Search in Google Scholar

8. Phares CR, Lynfield R, Farley MM, Mohle-Boetani J, Harrison LH et al. Active Bacterial Core Surveillance/Emerging Infections Program Network. Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA 2008; 299:2056–206510.1001/jama.299.17.2056Search in Google Scholar

9. Campbell JR, Hillier SL, Krohn MA, Ferrieri P, Zaleznik DF et al. Group B streptococcal colonization and serotype-specific immunity in pregnant women at delivery. Obstet. Gynecol. 2000; 96:498–50310.1097/00006250-200010000-00003Search in Google Scholar

10. Bizzarro MJ, Dembry LM, Baltimore RS, Gallagher PG. Changing patterns in neonatal Escherichia coli sepsis and ampicillin resistance in the era of intrapartum antibiotic prophylaxis. Pediatrics 2008; 121:689–696.10.1542/peds.2007-2171Search in Google Scholar

11. Shane AL, Stoll BJ. 2013. Recent developments and current issues in the epidemiology, diagnosis, and management of bacterial and fungal neonatal sepsis. Am. J. Perinatol. 30:131–14210.1055/s-0032-1333413Search in Google Scholar

12. Hornik CP, Fort P, Clark RH, Watt K, Benjamin DK et al. Early and late onset sepsis in very-low-birth-weight infants from a large group of neonatal intensive care units. Early Hum. Dev. 2012;88:S69 – S74.10.1016/S0378-3782(12)70019-1Search in Google Scholar

13. Xie Y, Kim KJ, Kim KS. Current concepts on Escherichia coli K1 translocation of the blood-brain barrier. FEMS Immunol. Med. Microbiol. 2004; 42:271–279.10.1016/j.femsim.2004.09.001Search in Google Scholar

14. McCracken G, Sarff L. Current status and therapy of neonatal E. coli meningitis. Hosp. Pract. 1974; 9:57–6410.1080/21548331.1974.11706889Search in Google Scholar

15. Polin RA, St Geme JW, III. Neonatal sepsis. Adv. Pediatr. Infect. Dis. 1992;7:25–61.Search in Google Scholar

16. Adair CE, Kowalsky L, Quon H, Ma D, Stoffman J, McGeer A, et al. Risk factors for early-onset group B streptococcal disease in neonates: a population-based case-control study. CMAJ 2003;169:198–203.Search in Google Scholar

17. Moller M, Thomsen AC, Borch K, Dinesen K, Zdravkovic M. Rupture of fetal membranes and premature delivery associated with group B streptococci in urine of pregnant women. Lancet 1984; ii: 69–70.10.1016/S0140-6736(84)90242-3Search in Google Scholar

18. Carstensen H, Christensen KK, Grennert L, Persson K, Polberger S. Early-onset neonatal group B streptococcal septicaemia in siblings. J. Infect. 1988; 17:201–204.10.1016/S0163-4453(88)96426-2Search in Google Scholar

19. Faxelius G, Bremme K, Kvist-Christensen K, Christensen P, Ringertz S. Neonatal septicemia due to group B streptococci—perinatal risk factors and outcome of subsequent pregnancies. J. Perinat. Med. 1988; 16:423–430.10.1515/jpme.1988.16.5-6.423Search in Google Scholar

20. Christensen KK, Dahlander K, Linden V, Svenningsen N, Christensen P. Obstetrical care in future pregnancies after fetal loss in group B streptococcal septicemia. A prevention program based on bacteriological and immunological follow-up. Eur. J. Obstet. Gynecol. Reprod. Biol. 1981; 12:143–150.10.1016/0028-2243(81)90069-1Search in Google Scholar

21. Tita AT, Andrews WW. Diagnosis and management of clinical chorioamnionitis. Clin. Perinatol. 2010; 37:339–35410.1016/j.clp.2010.02.003Search in Google Scholar

22. Herbst A, Kallen K. Time between membrane rupture and delivery and septicemia in term neonates. Obstet. Gynecol. 2007; 110:612–618.10.1097/01.AOG.0000277632.36186.84Search in Google Scholar

23. Richard A. Polin, MD and the COMMITTEE ON FETUS AND NEWBORN. Management of Neonates with Suspected or Proven Early-Onset Bacterial Sepsis. PEDIATRICS 2012; 129 (5): 1006-1510.1542/peds.2012-0541Search in Google Scholar

24. Cetinkaya M, Cekmez F, Bayukkale G et al. Lower vitamin Dlevels are associated with increased risk of early onset neonatal sepsis in term infants. J. Perinatol 2015; 35:39-4510.1038/jp.2014.146Search in Google Scholar

25. Simone S. Schüller, Boris W. Kramer, Eduardo Villamor, Andreas Spittler. Immunomodulation to Prevent or Treat Neonatal Sepsis: Past, Present, and Future. Front Pediatr. 2018 Jul 19; 6:199.10.3389/fped.2018.00199Search in Google Scholar

26. Wynn JL, Guthrie SO, Wong HR, Lahni P, Ungaro R et al. Postnatal age is a critical determinant of the neonatal host response to sepsis. Mol Med. 2015; 21:496–504.10.2119/molmed.2015.00064Search in Google Scholar

27. Van Well GTJ, Daalderop LA, Wolfs T, Kramer BW. Human perinatal immunity in physiological conditions and during infection. Mol Cell Pediatr. 2017; 4:4.10.1186/s40348-017-0070-1Search in Google Scholar

28. Strunk T, Inder T, Wang X, Burgner D, Mallard C et al. Infection-induced inflammation and cerebral injury in preterm infants. Lancet Infect Dis. 2014;14:751–62.10.1016/S1473-3099(14)70710-8Search in Google Scholar

29. Schelonka RL, Chai MK, Yoder BA, Hensley D, Brockett RM et al. Volume of blood required to detect common neonatal pathogens. J Pediatr. 1996;129(2):275–27810.1016/S0022-3476(96)70254-8Search in Google Scholar

30. Pourcyrous M, Korones SB, Bada HS, Patterson T, Baselski V. Indwelling umbilical arterial catheter: a preferred sampling site for blood culture. Pediatrics. 1988;81(6):821–825Search in Google Scholar

31. Pollin Ji, Baumgart S, Campman E, Mennuti MT, Polin RA. Use of umbilical cord blood culture for detection of neonatal bacteremia. Obstet. Gynecol 1981;57(2):233-237Search in Google Scholar

32. Visser VE, Hall RT. Urine culture in the evaluation of suspected neonatal sepsis. J Pediatr. 1979;94(4):635–63810.1016/S0022-3476(79)80040-2Search in Google Scholar

33. Vasan U, Lim DM, Greenstein RM, Raye JR. Origin of gastric aspirate polymorphonuclear leukocytes in infants born after prolonged rupture of membranes. J Pediatr. 1977;91(1): 69–7210.1016/S0022-3476(77)80447-2Search in Google Scholar

34. Mims LC, Medawar MS, Perkins JR, Grubb WR. Predicting neonatal infections by evaluation of the gastric aspirate: a study in two hundred and seven patients. Am J Obstet Gynecol. 1972;114(2):232–23810.1016/0002-9378(72)90064-6Search in Google Scholar

35. Choi Y, Saha SK, Ahmed AS, et al. Routine skin cultures in predicting sepsis pathogens among hospitalized preterm neonates in Bangladesh. Neonatology. 2008;94(2):123–13110.1159/00011972218332641Search in Google Scholar

36. Evans ME, Schaffner W, Federspiel CF, Cotton RB, McKee KT et al. Sensitivity, specificity, and predictive value of body surface cultures in a neonatal intensive care unit. JAMA. 1988;259(2):248–25210.1001/jama.1988.03720020050036Search in Google Scholar

37. Sherman MP, Goetzman BW, Ahlfors CE, Wennberg RP. Tracheal aspiration and its clinical correlates in the diagnosis of congenital pneumonia. Pediatrics. 1980;65 (2):258–26310.1542/peds.65.2.258Search in Google Scholar

38. Johnson CE, Whitwell JK, Pethe K, Saxena K, Super DM. Term newborns who are at risk for sepsis: are lumbar punctures necessary? Pediatrics. 1997; 99(4).10.1542/peds.99.4.e109099785Search in Google Scholar

39. Isaacs D, Barfield CP, Grimwood K, McPhee AJ, Minutillo C et al. Australian Study Group for Neonatal Infections. Systemic bacterial and fungal infections in infants in Australian neonatal units. Med J Aust. 1995;162(4):198–20110.5694/j.1326-5377.1995.tb126024.x7877542Search in Google Scholar

40. May M, Daley AJ, Donath S, Isaacs D; Australasian Study Group for Neonatal Infections. Early onset neonatal meningitis in Australia and New Zealand, 1992–2002. Arch Dis Child Fetal Neonatal Ed. 2005; 90(4):F324–F32710.1136/adc.2004.066134172192215878934Search in Google Scholar

41. Stoll BJ, Hansen N, Fanaroff AA, et al. To tap or not to tap: high likelihood of meningitis without sepsis among very low birth weight infants. Pediatrics. 2004;113(5):1181–118610.1542/peds.113.5.118115121927Search in Google Scholar

42. Garges HP, Moody MA, Cotten CM et al. Neonatal meningitis: what is the correlation among cerebrospinal fluid cultures, blood cultures, and cerebrospinal fluid parameters? Pediatrics.2006;117(4):1094–110010.1542/peds.2005-113216585303Search in Google Scholar

43. Shah SS, Ebberson J, Kestenbaum LA, Hodinka RL, Zorc JJ. Age-specific reference values for cerebrospinal fluid protein concentration in neonates and young infants. J Hosp Med. 2011;6(1):22–2710.1002/jhm.711297878620629018Search in Google Scholar

44. Byington CL, Kendrick J, Sheng X. Normative cerebrospinal fluid profiles in febrile infants. J Pediatr.2011;158(1):130–13410.1016/j.jpeds.2010.07.022Search in Google Scholar

45. Ahmed A, Hickey SM, Ehrett S, et al Cerebrospinal fluid values in the term neonate. Pediatr Infect Dis J. 1996;15(4):298–30310.1097/00006454-199604000-00004Search in Google Scholar

46. Bonadio WA, Stanco L, Bruce R, Barry D, Smith D. Reference values of normal cerebrospinal fluid composition in infants ages 0 to 8 weeks. Pediatr Infect Dis J. 1992;11(7):589–59110.1097/00006454-199207000-00015Search in Google Scholar

47. Nascimento-Carvalho CM, Moreno-Carvalho OA Normal cerebrospinal fluid values in full-term gestation and premature neonates. Arq Neuropsiquiatr. 1998;56(3A):375–38010.1590/S0004-282X1998000300005Search in Google Scholar

48. Martín-Ancel A, García-Alix A, Salas S, Del Castillo F, Cabañas F, Quero J.Cerebrospinal fluid leucocyte counts in healthy neonates. Arch Dis Child Fetal Neonatal Ed. 2006;91(5):F357–F35810.1136/adc.2005.082826Search in Google Scholar

49. Kestenbaum LA, Ebberson J, Zorc JJ, Hodinka RL, Shah SS. Defining cerebrospinal fluid white blood cell count reference values in neonates and young infants. Pediatrics. 2010;125(2):257–26410.1542/peds.2009-1181Search in Google Scholar

50. Smith PB, Garges HP, Cotton CM, Walsh TJ, Clark RH et al. Meningitis in preterm neonates: importance of cerebrospinal fluid parameters. Am J Perinatol. 2008;25(7):421–42610.1055/s-0028-1083839Search in Google Scholar

51. Smith PB, Cotten CM, Garges HP, et al. A comparison of neonatal Gram-negative rod and Gram-positive cocci meningitis. J Perinatol. 2006;26(2):111–11410.1038/sj.jp.7211438Search in Google Scholar

52. Manroe BL, Weinberg AG, Rosenfeld CR, Browne R. The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr. 1979;95(1):89–9810.1016/S0022-3476(79)80096-7Search in Google Scholar

53. Schmutz N, Henry E, Jopling J, Christensen RD. Expected ranges for blood neutrophil concentrations of neonates: the Manroe and Mouzinho charts revisited. J Perinatol. 2008;28(4):275–28110.1038/sj.jp.721191618200025Search in Google Scholar

54. Christensen RD, Rothstein G. Pitfalls in the interpretation of leukocyte counts of newborn infants.Am J Clin Pathol. 1979;72(4):608–61110.1093/ajcp/72.4.608Search in Google Scholar

55. Lloyd BW, Oto A. Normal values for mature and immature neutrophils in very preterm babies. Arch Dis Child. 1982;57(3):233–23510.1136/adc.57.3.233Search in Google Scholar

56. Schelonka RL, Yoder BA, DesJardins SE, Hall RB, Butler J. Peripheral leukocyte count and leukocyte indexes in healthy newborn term infants. J Pediatr. 1994;125(4):603–60610.1016/S0022-3476(94)70018-4Search in Google Scholar

57. Newman TB, Puopolo KM, Wi S, Draper D, Escobar GJ. Interpreting complete blood counts soon after birth in newborns at risk for sepsis. Pediatrics. 2010;126(5):903–90910.1542/peds.2010-0935319786220974782Search in Google Scholar

58. Manzoni P, Mostert M, Galletto P, et al. Is thrombocytopenia suggestive of organism-specific response in neonatal sepsis? Pediatr Int. 2009;51(2):206–21010.1111/j.1442-200X.2008.02689.xSearch in Google Scholar

59. Vouloumanou EK, Plessa E, Karageorgopoulos DE, Mantadakis E, Falagas ME. Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med. 2011;37(5):747–76210.1007/s00134-011-2174-821380522Search in Google Scholar

60. Benitz WE. Adjunct laboratory tests in the diagnosis of early-onset neonatal sepsis. Clin Perinatol. 2010;37(2):421–43810.1016/j.clp.2009.12.00120569816Search in Google Scholar

61. Benitz WE, Han MY, Madan A, Ramachandra P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics. 1998;102(4)10.1542/peds.102.4.e419755278Search in Google Scholar

62. Dandona P, Nix D, Wilson MF, et al. Procalcitonin increase after endotoxin injection in normal subjects. J Clin Endocrinol Metab. 1994;79(6):1605–160810.1210/jc.79.6.1605Search in Google Scholar

63. Greenwood C Morrow AL Lagomarcino AJ et al. Early empiric antibiotic use in preterm infants is associated with lower bacterial diversity and higher relative abundance of Enterobacter. J Pediatr. 2014. Jul;165(1):23-9.10.1016/j.jpeds.2014.01.010407456924529620Search in Google Scholar

64. Kaufman D, Fairchild KD. Clinical microbiology of bacterial and fungal sepsis in very-low-birth-weight infants. Clin Microbiol Rev. 2004; 17:638–8010.1128/CMR.17.3.638-680.200445255515258097Search in Google Scholar

65. Van den Berg JP, Westerbeek EAM, van der Klis FRM, Berbers GAM, van Elburg RM. Transplacental transport of IgG antibodies to preterm infants: a review of the literature. Early Hum Dev. 2011; 87:67–72.10.1016/j.earlhumdev.2010.11.00321123010Search in Google Scholar

66. Ohlsson A, Lacy JB. Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev. 2015; 3:CD001239.10.1002/14651858.CD001239.pub525815707Search in Google Scholar

67. Tao K-M, Li X-Q, Yang L-Q, Yu W-F, Lu Z-J, Sun Y-M, et al. Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev. 2014; CD010050.10.1002/14651858.CD010050.pub2651711925199493Search in Google Scholar

68. Moe-Byrne T, Brown JV, McGuire W. Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev. 2016; 4:CD001457.10.1002/14651858.CD001457.pub526755330Search in Google Scholar

69. Tarnow-Mordi W, Isaacs D, Dutta S. Adjunctive immunologic interventions in neonatal sepsis. Clin Perinatol. 2010; 37:481–99.10.1016/j.clp.2009.12.00220569818Search in Google Scholar

70. Saugstad OD. Oxidative stress in the newborn–a 30-year perspective. Biol Neonate. 2005; 88:228–36.10.1159/00008758616210845Search in Google Scholar

71. Darlow BA, Austin NC. Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst Rev. 2003;(4):CD003312.10.1002/14651858.CD003312871335014583967Search in Google Scholar

72. D’Angelo G, Marseglia L, Reiter RJ, Buonocore G, Gitto E. Melatonin and neonatal sepsis: a promising antioxidant adjuvant agent. Am J Perinatol. 2017; 34:1382–8.10.1055/s-0037-160424428704851Search in Google Scholar

73. Henderson R, Kim S, Lee E. Use of melatonin as adjunctive therapy in neonatal sepsis: A systematic review and meta-analysis. Complement Ther Med. 2018; Aug;39:131-136.10.1016/j.ctim.2018.06.00230012383Search in Google Scholar

74. Mathias B, Szpila BE, Moore FA, Efron PA, Moldawer LL. A review of GM-CSF Therapy in Sepsis. Medicine (Baltimore). 2015; 94:e2044.10.1097/MD.0000000000002044505888526683913Search in Google Scholar

75. Carr R, Modi N, Doré C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane database Syst Rev. 2003; CD003066.10.1002/14651858.CD003066701651612917944Search in Google Scholar

76. Castagnola E, Dufour C. Role of G-CSF GM-CSF in the management of infections in preterm newborns: an update. Early Hum Dev. 2014; 90:S15–17.10.1016/S0378-3782(14)50005-9Search in Google Scholar

77. Schüller SS, Wisgrill L, Herndl E, Spittler A, Förster-Waldl E. et al. Pentoxifylline modulates LPS-induced hyperinflammation in monocytes of preterm infants in vitro. Pediatr Res. 2017; 82:215–25.10.1038/pr.2017.4128288151Search in Google Scholar

78. Speer EM, Dowling DJ, Ozog LS, Xu J, Yang J, Kennady G, et al. Pentoxifylline inhibits TLR- and inflammasome-mediated in vitro inflammatory cytokine production in human blood with greater efficacy and potency in newborns. Pediatr Res. 2017; 81:806–16.10.1038/pr.2017.628072760Search in Google Scholar

79. Pammi M, Haque KN. Pentoxifylline for treatment of sepsis and necrotizing enterocolitis in neonates. Cochrane Database Syst Rev. 2015; 3:CD004205.10.1002/14651858.CD004205.pub325751631Search in Google Scholar

80. Jones CE, Calvert A, Le Doare K. Vaccination in pregnancy—recent developments. Pediatr Infect Dis J. 2018; 37:191–3.10.1097/INF.000000000000182229135826Search in Google Scholar

81. Orman KL, English BK. Effects of antibiotic class on the macrophage inflammatory response to Streptococcus pneumoniae. J Infect Dis. 2000; 182:1561–5.10.1086/31586111023483Search in Google Scholar

82. Krakauer T, Buckley M. Doxycycline is anti-inflammatory and inhibits staphylococcal exotoxin-induced cytokines and chemokines. Antimicrob Agents Chemother. 2003; 47:3630–3.10.1128/AAC.47.11.3630-3633.200325377414576133Search in Google Scholar

83. Bi W, Zhu L, Jing X, Zeng Z, Liang Y, Xu A, et al. Rifampicin improves neuronal apoptosis in LPS-stimulated co-cultured BV2 cells through inhibition of the TLR-4 pathway. Mol Med Rep. 2014; 10:1793–9.10.3892/mmr.2014.2480414837625119251Search in Google Scholar

84. Altenburg J, de Graaff CS, van der Werf TS, Boersma WG. Immunomodulatory effects of macrolide antibiotics – part 1: biological mechanisms. Respiration. 2011; 81:67–74.10.1159/00032031920733281Search in Google Scholar

85. Nair V, Loganathan P, Soraisham AS. Azithromycin and other macrolides for prevention of bronchopulmonary dysplasia: a systematic review and meta-analysis. Neonatology. 2014; 106:337–47.10.1159/00036349325278176Search in Google Scholar

86. Upadhyay K, Hiregoudar B, Meals E, English BK, Talati AJ. Combination therapy with ampicillin and azithromycin improved outcomes in a mouse model of group B streptococcal sepsis. PLoS ONE. 2017; 12:e0182023.10.1371/journal.pone.0182023553630528759625Search in Google Scholar

87. Centers for Disease Control and Prevention. Prevention of perinatal group B streptococcal disease—revised guidelines from CDC, 2010. MMWR Recomm Rep. 2010;59(RR-10):1–36Search in Google Scholar

eISSN:
2335-075X
ISSN:
1820-8665
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other