Acceso abierto

Non-Uniform Torsion Behavior of Thin-Walled Beams According to the Finite Element Method

  
04 oct 2024

Cite
Descargar portada

Addessi, D. – Di Re, P. – Cimarello, G. (2021) Enriched beam finite element models with torsion and shear warping for the analysis of thin-walled structures, Thin-Walled Structures, vol. 159. DOI:10.1016/j.tws.2020.107259. Search in Google Scholar

Allplan Bridge - Software for Bridge Engineering. Retrieved Jan 28, 2024, from https://www.allplan.com/products/allplan-bridge/ Search in Google Scholar

Back, S.Y. – Will, K. M. (1998) A shear-flexible element with warping for thin-walled open beams, International Journal for Numerical Methods in Engineering,vol. 43, No. 7, pp. 1173–1191. DOI:10.1002/(SICI)1097-0207(19981215)43:7<1173::AIDNME340>3.0.CO;2-4. Search in Google Scholar

Benscoter, S. U. (1954) A Theory of Torsion Bending for Multicell Beams, Journal of Applied Mechanics, vol. 21, No. 1, pp. 25–34. DOI:10.1115/1.4010814. Search in Google Scholar

Braess, D. (2007) Finite Elements. Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd ed, Cambridge University Press. Search in Google Scholar

El Fatmi, R. (2007) Nonuniform warping including the effects of torsion and shear forces, Part I: A general beam theory, International Journal of Solids and Structures, vol. 44, Nos. 18–19. pp. 5912–5929. DOI:10.1016/j.ijsolstr.2007.02.006. Search in Google Scholar

El Fatmi, R. (2007) Nonuniform warping including the effects of torsion and shear forces. Part II: Analytical and numerical applications, International Journal of Solids and Structures, vol. 44, Nos. 18–19, pp. 5930–5952. DOI:10.1016/j.ijsolstr.2007.02.005. Search in Google Scholar

Erkmen, R. E. – Mohareb, M. (2006) Torsion analysis of thin-walled beams including shear deformation effects, Thin-walled structures, vol. 44, No. 10, pp. 1096–1108. DOI:10.1016/j. tws.2006.10.012. Search in Google Scholar

Ferradi, M. K. – Cespedes, X. – Arquier, M. (2013) A higher order beam finite element with warping eigenmodes, Engineering Structures, vol. 46, pp. 748–762. DOI:10.1016/j.engstruct.2012.07.038. Search in Google Scholar

Fialko, S. Y. – Lumelskyy, D.E. (2013) On numerical realization of the problem of torsion and bending of prismatic bars of arbitrary cross section. J Math Sci, vol. 192, pp. 664–681. DOI: 10.1007/s10958-013-1424-4. Search in Google Scholar

Genoese, A., Genoese, A., Bilotta, A., & Garcea, G. (2013). A mixed beam model with nonuniform warpings derived from the Saint Venànt rod, Computers & Structures, vol. 121, pp. 87-98. DOI:10.1016/j.compstruc.2013.03.017 Search in Google Scholar

Gruttmann, F. – Sauer, R. – Wagner, W. (1999) Shear stresses in prismatic beams with arbitrary cross-sections, International Journal for Numerical Methods in Engineering, vol. 45, No. 7, pp. 865–889. DOI:10.1002/(SICI)1097-0207(19990710)45:7<865::AIDNME609>3.0.CO;2-3. Search in Google Scholar

IDEA StatiCa - Structural Engineering Software. Retrieved Jan 28, 2024, from https://www.ideastatica.com/ Search in Google Scholar

Kim, N. I. – Kim, M.Y. (2005) Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects, Thin-Walled Structures, vol. 43, No. 5, pp. 701–734. DOI:10.1016/j.tws.2005.01.004. Search in Google Scholar

Kugler, S. – Fotiu, P.A. – Murín, J. (2021). A novel GBT-formulation for thin-walled FGM-beam-structures based on a reference beam problem. Composite Structures, vol. 257. DOI: 10.1016/j. compstruct.2020.113158. Search in Google Scholar

Lewiński, T. – Czarnecki, S. (2021) On incorporating warping effects due to transverse shear and torsion into the theories of straight elastic bars, Acta Mechanica, vol. 232, pp. 247–282. DOI:10.1007/s00707-020-02849-7. Search in Google Scholar

Librescu, L. – Song, O. (2005) Thin-walled composite beams: theory and application, vol. 131, Springer Science & Business Media. Search in Google Scholar

Mokos, V. G., & Sapountzakis, E. J. (2011) Secondary torsional moment deformation effect by BEM, International Journal of Mechanical Sciences, vol. 53, No. 10, pp. 897-909. DOI: 10.1016/j. ijmecsci.2011.08.001. Search in Google Scholar

Murín, J. – Aminbaghai, M. – Kutiš, V. – Královič, V. – Sedlár, T. – Goga, V. – Mang, H. (2014) A new 3D Timoshenko finite beam element including nonuniform torsion of open and closed cross sections, Engineering Structures, vol. 59, pp. 153–160. DOI:10.1016/j.engstruct.2013.10.036. Search in Google Scholar

Murin, J. – Kugler, S. – Hrabovsky, J. – Kutis, V. – Paulech, J. – Aminbaghai, M. (2021). Influence of spatially varying material properties on the bimoment normal and shear stresses by warping torsion of FGM beams, Composite Structures, vol. 256, DOI: 10.1016/j.compstruct.2020.113043. Search in Google Scholar

Murín, J. – Kugler, S. – Hrabovsky, J. – Kutiš, V. – Paulech, J. – & Aminbaghai, M. (2022). Warping torsion of FGM beams with spatially varying material properties. Composite Structures, vol. 291. DOI: 10.1016/j.compstruct.2022.115592. Search in Google Scholar

Murín, J. – Kutiš, V. – Královič, V. – Sedlár, T. (2012) 3D beam finite element including nonuniform torsion, Procedia Engineering, vol. 48, pp. 436–444. DOI:10.1016/j.proeng.2012.09.537. Search in Google Scholar

Murín, J. – Kutiš, V. (2008) An effective finite element for torsion of constant cross-sections including warping with secondary torsion moment deformation effect, Engineering Structures,vol. 30, No. 10, pp. 2716–2723. DOI:10.1016/j.engstruct.2008.03.004. Search in Google Scholar

Oñate, E. (2013) Structural analysis with the finite element method. Linear statics: volume 2: beams, plates and shells. Springer Science & Business Media. Search in Google Scholar

Paradiso, M. – Vaiana, N. – Sessa, S. – Marmo, F. – Rosati, L. (2020) A BEM approach to the evaluation of warping functions in the Saint Venant theory, Engineering Analysis with Boundary Elements, vol. 113, pp. 359–371. DOI:10.1016/j.enganabound.2020.01.004. Search in Google Scholar

Pilkey, W. D. (2002) Analysis and design of elastic beams: Computational methods, John Wiley & Sons. Search in Google Scholar

Prokić, A. (1993) Thin-walled beams with open and closed cross-sections, Computers and Structures, vol. 47, No. 6, pp. 1065–1070. DOI:10.1016/0045-7949(93)90310-A. Search in Google Scholar

Prokić, A. (1996) New warping function for thin-walled beams. II: Finite element method and applications. Journal of Structural Engineering, vol. 122, No. 12, pp. 1443–1452. DOI: 10.1061/(ASCE)0733-9445(1996)122:12(1443). Search in Google Scholar

Saadé, K. – Espion, B. – Warzée, G. (2004) Nonuniform torsional behavior and stability of thin-walled elastic beams with arbitrary cross sections, Thin-Walled Structures, vol. 42, No. 6, pp. 857–881. DOI:10.1016/j.tws.2003.12.003. Search in Google Scholar

SAP2000 Structural analysis and design. Computers and Structures, Inc. (n.d.). Retrieved May 15, 2022, from https://www.csiamerica.com/products/sap2000. Search in Google Scholar

Sapountzakis, E. J., & Tsipiras, V. J. (2010). Shear deformable bars of doubly symmetrical cross section under nonlinear nonuniform torsional vibrationsapplication to torsional postbuckling configurations and primary resonance excitations, Nonlinear Dynamics, vol. 62, pp. 967-987. DOI: 10.1007/s11071-010-9778-3. Search in Google Scholar

SCAD Software - Structural Analysis and Design. Retrieved Jan 28, 2024, from https://scadsoft.com/en Search in Google Scholar

SCIA English Homepage. SCIA Structural Analysis Software and Design Tools. Retrieved 16 Jan 2022, from https://www.scia.net/en. Search in Google Scholar

Shakourzadeh, H. – Guo, Y. Q. – Batoz, J.L. (1995) A torsion bending element for thin-walled beams with open and closed cross sections, Computers and Structures, vol. 55, No. 6, pp. 1045–1054. DOI:10.1016/0045-7949(94)00509-2. Search in Google Scholar

Timoshenko, S. P. – Goodier, J. N. (1970) Theory of Elasticity, 3rd ed, McGraw-Hill Book Co. Search in Google Scholar

Timoshenko, S. P. X. (1922) On the transverse vibrations of bars of uniform cross-section, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 43, No. 253, pp. 125–131. DOI:10.1080/14786442208633855. Search in Google Scholar

Timoshenko, S. P. LXVI. (1921) On the correction for shear of the differential equation for transverse vibrations of prismatic bars, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, No. 245, pp. 744–746. DOI:10.1080/14786442108636264. Search in Google Scholar

Tralli, A. (1986) A simple hybrid model for torsion and flexure of thin-walled beams, Computers and Structures, vol. 22, No. 4, pp. 649–658. DOI:10.1016/0045-7949(86)90017-9. Search in Google Scholar

Tran, D. B. – Navrátil, J. – Čermák, M. (2021) An efficiency method for assessment of shear stress in prismatic beams with arbitrary crosssections, Sustainability (Switzerland), vol. 13, No. 2. pp. 1–20. DOI:10.3390/su13020687. Search in Google Scholar

Tran, D. B. (2021) Torsional Shear Stress in Prismatic Beams With Arbitrary Cross-Sections Using Finite Element Method, Stavební obzor - Civil Engineering Journal, vol. 30, No. 2. DOI:10.14311/cej.2021.02.0030. Search in Google Scholar

Tsipiras, V. J. – Sapountzakis, E. J. (2014). Bars under nonuniform torsionApplication to steel bars, assessment of EC3 guidelines. Engineering structures, vol. 60, pp.133-147. DOI: 10.1016/j.engstruct.2013.12.027. Search in Google Scholar

Tsipiras, V. J. – Sapountzakis, E.J. (2012) Secondary torsional moment deformation effect in inelastic nonuniform torsion of bars of doubly symmetric cross section by BEM, International Journal of Non-Linear Mechanics, vol. 47, No. 4, pp. 68–84. DOI: 10.1016/j.ijnonlinmec.2012.03.007. Search in Google Scholar

Vlasov, V. Z. (1961) Thin walled elastic beams, Israel Program for Scientific Translations, Jerusalem, Israel. Search in Google Scholar

Wunderlich, W. – Pilkey, W.D. (2002) Mechanics of structures: variational and computational methods, 2d ed. CRC Press, 912 pp. Search in Google Scholar

Zienkiewicz, O. C. – Taylor, R. L. (2000) The finite element method: the basis, vol.1, 5th ed. Butterworth-Heineman. Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ingeniería, Introducciones y reseñas, Ingeniería, otros