Cite

ACI Committee 318: Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute, Farmington Hills. MA, USA 2019. Search in Google Scholar

ASTM C150: Standard specification for Portland cement. American Society For Testing And Materials. 2004. Search in Google Scholar

ASTM C33: Standard Specification for Concrete Aggregates. 2003. Search in Google Scholar

ASTM C39: Standard Test Method for Compressive Strength of Cylindrical Concrete, Specimens. 2014. Search in Google Scholar

Adjoudj M. H. - Ezziane K. - Kadri E. H. - Ngo T. T. – Kaci A. (2014). Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer. Constr. Build. Mater. 70 (2014): 549–559. https://DOI:10.1016/j.conbuildmat.2014.07.111. Search in Google Scholar

Aliabdo Ali A. - Abd Elmoaty M. Abd Elmoaty - Hazem A. Salem. (2016). Effect of cement addition, solution resting time and curing characteristics on fly ash based geopolymer concrete performance. Construction and Building Materials. 123 (2016): 581–593. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.043 Search in Google Scholar

Baghabra Al-Amoudi O. S. - Abiola T. O. - Maslehuddin M. (2006). Effect of superplasticizer on plastic shrinkage of plain and silica fume cement concretes. Constr. Build. Mater. 20 (9): 642–647. http://DOI:10.1016/j.conbuildmat.2005.02.024. Search in Google Scholar

Carazeanu, I. - Chirila E. - Georgescu M. (2002). Investigation of the hydration process in 3CaO–Al2O3–CaSO4–2H2O–plasticizer–H2O systems by X-ray diffraction. Talanta, 57 (4): 617–623. https://doi.org/10.1016/S0039-9140(02)00100-5. Search in Google Scholar

Cartuxo, F. - de Brito J. - Evangelista L. - Jiménez J. R. - Ledesma E. F. (2015). Rheological behaviour of concrete made with fine recycled concrete aggregates – influence of the superplasticizer. Constr. Build. Mater. 89 (2015): 36–47. https://DOI:10.1016/j.conbuildmat.2015.03.119. Search in Google Scholar

Chen, S. - Ting-shu H. - Zhang G. – Wang X. – Yanyan H. (2016). Effects of superplasticizers on carbonation resistance of concrete. Construction and Building Materials. 108 (2016): 48–55. https://DOI:10.1016/j.conbuildmat.2016.01.037 . Search in Google Scholar

Da C. - Xiao-tong Y. - Jun S. - Ying-di L. - Yan Z. (2017). Investigation of the curing time on the mechanical behavior of normal concrete under triaxial compression. Construction and Building Materials. 147 (2017): 488-496. https://doi.org/10.1016/j.conbuildmat.2017.04.180. Search in Google Scholar

El-Ashkar N. - Nanko H. - Kurtis K. (2007). Effect of moisture state on mechanical behavior and microstructure of pulp fiber-cement mortars. J. Mater. Civ. Eng. 19(8), https://doi.org/10.1061/(ASCE)0899-1561(2007)19:8(691). Search in Google Scholar

Fang S. - Lam S. S. E. - Li B. - Wu B. (2020). Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Construction and Building Materials. 249 (2020): 118799. https://doi.org/10.1016/j.conbuildmat.2020.118799. Search in Google Scholar

Ferrari, L. - Kaufmann, J. – Winnefeld F. – Plank J. (2010). Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. J. Colloid Interface Sci. 347 (1): 15–24. https://doi.org/10.1016/j.jcis.2010.03.005. Search in Google Scholar

Felekoglu B. - Tosun-Felekoglu K. – Ranade R. – Zhang Q. – Li V. C. (2014). Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPPECC. Compos. PART B-Eng., 60: 359–370. Search in Google Scholar

Gołaszewski J. - Szwabowski, J. (2004). Influence of superplasticizers on rheological behaviour of fresh cement mortars. Cem. Concr. Res. 34 (2): 235–248. https://DOI:10.1016/j.cemconres.2003.07.002. Search in Google Scholar

Haghighatnejad N. - Yasin Mousavi S. - Jalal Khaleghi S.Tabarsa A. - Yousefi S. (2016). Properties of recycled PVC aggregate concrete under different curing conditions. Construction and Building Materials. 126 (2016): 943–950. http://dx.doi.org/10.1016/j.conbuildmat.2016.09.047. Search in Google Scholar

Hui M. - Qian S. - Zhang Z. (2014). Effect of self-healing on water permeability and mechanical property of medium-early-strength engineered cementitious composites. Constr. Build. Mater., 68(15): 92–101. Search in Google Scholar

Kim J.-K. - Moon Y.H. - Eo S.H. (1998). Compressive strength development of concrete with different curing time and temperature. Cement and Concrete Research. PP: 28 (12): 1761-1773. https://doi.org/10.1016/S0008-8846(98)00164-1. Search in Google Scholar

Kreppelt F. – Weibel M. – Zampini D. – Romer M. (2002). Influence of solution chemistry on the hydration of polished clinker surfaces—a study of different types of polycarboxylic acid-based admixtures. Cem. Concr. Res. 32 (01): 187–198. https://DOI:10.1016/S0008-8846(01)00654-8. Search in Google Scholar

Lange A. - Hirata T. - Plank J. (2014). Influence of the HLB value of polycarboxylate superplasticizers on the flow behavior of mortar and concrete. Cem. Concr. Res. 60 (2014): 45–50. https://DOI:10.1016/j.cemconres.2014.02.011. Search in Google Scholar

Li Y. – Yang C. - Zhang Y. – Zheng J. – Guo H. – Lu M. (2014). Study on dispersion, adsorption and flow retaining behaviors of cement mortars with TPEG-type polyether kind polycarboxylate superplasticizers. Constr. Build. Mater. 64 (2014): 324– 332. https://DOI:10.1016/j.conbuildmat.2014.04.050. Search in Google Scholar

Madandoust R. - Kazemi M. - Khakpour Talebi P. - de Brito J. (2019). Effect of the curing type on the mechanical properties of lightweight concrete with polypropylene and steel fibres. Construction and Building Materials. 223 (2019): 1038–1052. https://doi.org/10.1016/j.conbuildmat.2019.08.006 Search in Google Scholar

Mollah M. Y. A. – Adams W. J. – Schennach R. – Cocke D. L. (2000). A review of cement– superplasticizer interactions and their models. Adv. Cem. Res. 12 (4): 153–161. https://DOI:10.1680/adcr.2000.12.4.153 Search in Google Scholar

Palacios M. - Puertas F. – Bowen P. – Houst Y. F. (2009). Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes. J. Mater. Sci. 44 (10): 2714–2723. https://DOI:10.1007/s10853-009-3356-4. Search in Google Scholar

Perrot A. - Rangeard D. - Picandet V. – Mélinge Y. (2013). Hydro-mechanical properties of fresh cement pastes containing polycarboxylate superplasticizer. Cem. Concr. Res. 53 (2013): 221–228. http://DOI:10.1016/j.cemconres.2013.06.015 Search in Google Scholar

Puertas F. - Santos H. - Palacios M. - Martínez-Ramírez S. (2005). Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv. Cem. Res. 17 (2): 77–89. https://DOI:10.1680/adcr.17.2.77.65044. Search in Google Scholar

Toledano-Prados M. - Lorenzo-Pesqueira M. - González-Fonteboa B. - Seara-Paz S. (2013). Effect of polycarboxylate super-plasticizers on large amounts of fly ash cements. Constr. Build. Mater. 48 (2013): 628–635. https://DOI:10.1016/j.conbuildmat.2013.07.069. Search in Google Scholar

Uchikawa H. - Hanehara S. – Shirasaka T. – Sawaki D. (1992). Effect of admixture on hydration of cement, adsorptive behavior of admixture and fluidity and setting of fresh cement paste. Cem. Concr. Res. 22 (6): 1115–1129. http://dx.doi.org/10.1016/0008–8846(92)90041-S. Search in Google Scholar

Yamada K. – Takahashi T. – Hanehara S. - Matsuhisa M. (2000). Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 30 (2): 197–207. https://DOI:10.1016/S0008-8846(99)00230-6. Search in Google Scholar

Yu Y. - Liu J. - Ran Q. - Qiao M. - Zhou D. (2013). Current understanding of comb-like copolymer dispersants impact on the hydration characteristics of C3A– gypsum suspension. J. Therm. Anal. Calorim. 111 (2013): 437–444. https://DOI:10.1007/s10973-012-2430-3. Search in Google Scholar

Yu K. - Dai J. - Lu Z. - Leung C. (2015). Mechanical properties of engineered cementitious composites subjected to elevated temperatures. J. Mater. Civ. Eng. 27 (10). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001241. Search in Google Scholar

Yildirim G. - Sahmaran M. - Ahmed H. (2015). Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. J. Mater. Civ. Eng. 27 (6). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001145. Search in Google Scholar

Walpole R. E. – Myers R. H. - Myers S. L. - Ye K. E. (2016). Probability & Statistics for Engineers & Scientists. Ninth ed. Search in Google Scholar

Wu M. - Johannesson B. – Geiker M. (2012). A review: Self-healing in cementitious materials and engineered cementitious composite as a selfhealing material. Constr. Build. Mater., 28(1): 571–583. https://doi.org/10.1016/j.conbuildmat.2011.08.086. Search in Google Scholar

Zhu Y. - Zhang Z. C. - Yang Y. Z. - Yao Y. (2014). Measurement and correlation of ductility and compressive strength for engineered cementitious composites (ECC) produced by binary and ternary systems of binder materials: Fly ash, slag, silica fume and cement. Constr. Build. Mater., 68: 192–198. https://doi.org/10.1016/j.conbuildmat.2014.06.080. Search in Google Scholar

Zhu Y. - Zhang Z. - Yao Y. - Guan X. - Yang Y. (2016). Effect of Water-Curing Time on the Mechanical Properties of Engineered Cementitious Composites. Journal of Materials in Civil Engineering. 28 (11) 04016123-1. DOI: 10.1061/(ASCE)MT.1943-5533.0001636. Search in Google Scholar

Zhang Y. – Kong X. (2014). Influences of superplasticizer, polymer latexes and asphalt emulsions on the pore structure and impermeability of hardened cementitious materials. Constr. Build. Mater. 53 (2014): 392–402. http://DOI:10.1016/j.conbuildmat.2013.11.104. Search in Google Scholar

eISSN:
1338-3973
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other