Acceso abierto

Bearing capacity of tapered walls: Physical modeling and numerical analysis

  
14 ago 2025

Cite
Descargar portada

Fahmy, A., El Naggar, M.H. (2017). Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35(4), 1549-1576. doi: 10.1007/s10706-017-0192-1. Fahmy A. El Naggar M.H. 2017 Axial performance of helical tapered piles in sand Geotechnical and Geological Engineering 35 4 1549 1576 10.1007/s10706-017-0192-1 Open DOISearch in Google Scholar

Naggar, M.H.E., Sakr, M. (2000). Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37(6), 1295-1308. doi: 10.1139/t00-049. Naggar M.H.E. Sakr M. 2000 Evaluation of axial performance of tapered piles from centrifuge tests Canadian Geotechnical Journal 37 6 1295 1308 10.1139/t00-049 Open DOISearch in Google Scholar

Sakr, M., Hesham El Naggar, M. (2003). Centrifuge modeling of tapered piles in sand. Geotechnical Testing Journal, 26(1), 8935. doi: 10.1520/GTJ11106J. Sakr M. Hesham El Naggar M. 2003 Centrifuge modeling of tapered piles in sand Geotechnical Testing Journal 26 1 8935 10.1520/GTJ11106J Open DOISearch in Google Scholar

Wei, J., El Naggar, M.H. (1998). Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35(4), 641-654. doi: 10.1139/t98-033. Wei J. El Naggar M.H. 1998 Experimental study of axial behaviour of tapered piles Canadian Geotechnical Journal 35 4 641 654 10.1139/t98-033 Open DOISearch in Google Scholar

Randolph, M.F., Carter, J.P., Wroth, C.P. (1979). Driven piles in clay – The effects of installation and subsequent consolidation. Géotechnique, 29(4), 361-393. doi: 10.1680/geot.1979.29.4.361. Randolph M.F. Carter J.P. Wroth C.P. 1979 Driven piles in clay – The effects of installation and subsequent consolidation Géotechnique 29 4 361 393 10.1680/geot.1979.29.4.361 Open DOISearch in Google Scholar

Robinsky, E.I., Morrison, C.F. (1964). Sand displacement and compaction around model friction piles. Canadian Geotechnical Journal, 1(2), 81-93. doi: 10.1139/t64-002. Robinsky E.I. Morrison C.F. 1964 Sand displacement and compaction around model friction piles Canadian Geotechnical Journal 1 2 81 93 10.1139/t64-002 Open DOISearch in Google Scholar

Beijer Lundberg, A., Dijkstra, J., van Tol, F. (2012). On the Modelling of Piles in Sand in the Small Geotechnical Centrifuge. Delft University of Technology, Delft, The Netherlands, p. 10. Beijer Lundberg A. Dijkstra J. van Tol F. 2012 On the Modelling of Piles in Sand in the Small Geotechnical Centrifuge Delft University of Technology, Delft The Netherlands p. 10 Search in Google Scholar

Fu, S., Yang, Z.X., Jardine, R.J., Guo, N. (2023). Large-deformation finite-element simulation of deformation and strain fields resulting from closed-end displacement pile installation in sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(6), 04023038. doi: 10.1061/JGGEFK.GTENG-10480. Fu S. Yang Z.X. Jardine R.J. Guo N. 2023 Large-deformation finite-element simulation of deformation and strain fields resulting from closed-end displacement pile installation in sand Journal of Geotechnical and Geoenvironmental Engineering 149 6 04023038 10.1061/JGGEFK.GTENG-10480 Open DOISearch in Google Scholar

Yi, J.T., Liu, F., Zhang, T.B., Yao, K., Zhen, G. (2021). A large deformation finite element investigation of pile group installations with consideration of intervening consolidation. Applied Ocean Research, 112, 102698. doi: 10.1016/j.apor.2021.102698. Yi J.T. Liu F. Zhang T.B. Yao K. Zhen G. 2021 A large deformation finite element investigation of pile group installations with consideration of intervening consolidation Applied Ocean Research 112 102698 10.1016/j.apor.2021.102698 Open DOISearch in Google Scholar

Hamann, T., Qiu, G., Grabe, J. (2015). Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions. Computers and Geotechnics, 63, 279-290. doi: 10.1016/j.compgeo.2014.10.006. Hamann T. Qiu G. Grabe J. 2015 Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions Computers and Geotechnics 63 279 290 10.1016/j.compgeo.2014.10.006 Open DOISearch in Google Scholar

Konkol, J., Bałachowski, L. (2017). Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method. Studia Geotechnica et Mechanica, 39(1), 27-38. doi: 10.1515/sgem-2017-0003 Konkol J. Bałachowski L. 2017 Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method Studia Geotechnica et Mechanica 39 1 27 38 10.1515/sgem-2017-0003 Open DOI

Yu, H., Zhou, H., Sheil, B., Liu, H. (2022). Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clay. Canadian Geotechnical Journal, 59(12), 2050-2066. doi: 10.1139/cgj-2021-0527. Yu H. Zhou H. Sheil B. Liu H. 2022 Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clay Canadian Geotechnical Journal 59 12 2050 2066 10.1139/cgj-2021-0527 Open DOISearch in Google Scholar

Galavi, V., Martinelli, M. (2024). MPM simulation of the installation of an impact-driven pile in dry sand and subsequent axial bearing capacity. Journal of Geotechnical and Geoenvironmental Engineering, 150(4), 04024019. doi: 10.1061/JGGEFK.GTENG-11592. Galavi V. Martinelli M. 2024 MPM simulation of the installation of an impact-driven pile in dry sand and subsequent axial bearing capacity Journal of Geotechnical and Geoenvironmental Engineering 150 4 04024019 10.1061/JGGEFK.GTENG-11592 Open DOISearch in Google Scholar

Gao, L., Guo, N., Yang, Z. X., Jardine, R. J. (2022). MPM modeling of pile installation in sand: Contact improvement and quantitative analysis. Computers and Geotechnics, 151, 104943. doi: 10.1016/j.compgeo.2022.104943. Gao L. Guo N. Yang Z. X. Jardine R. J. 2022 MPM modeling of pile installation in sand: Contact improvement and quantitative analysis Computers and Geotechnics 151 104943 10.1016/j.compgeo.2022.104943 Open DOISearch in Google Scholar

Phuong, N.T.V., Tol, A.F., van Elkadi, A.S.K., Rohe, A. (2016). Numerical investigation of pile installation effects in sand using material point method. Computers and Geotechnics, 73, 58-71. doi: 10.1016/j.compgeo.2015.11.012. Phuong N.T.V. Tol A.F. van Elkadi A.S.K. Rohe A. 2016 Numerical investigation of pile installation effects in sand using material point method Computers and Geotechnics 73 58 71 10.1016/j.compgeo.2015.11.012 Open DOISearch in Google Scholar

Duan, N., Cheng, Y.P., Lu, M., Wang, Z. (2021). DEM investigation of sand response during displacement pile installation. Ocean Engineering, 230, 109040. doi: 10.1016/j.oceaneng.2021.109040. Duan N. Cheng Y.P. Lu M. Wang Z. 2021 DEM investigation of sand response during displacement pile installation Ocean Engineering 230 109040 10.1016/j.oceaneng.2021.109040 Open DOISearch in Google Scholar

Guo, N., Liu, H.F., Li, B.J., Yang, Z.X. (2024). DEM study of the stress fields around the closed-ended displacement pile driven in sand. Canadian Geotechnical Journal, 61(3), 549-561. doi: 10.1139/cgj-2023-0025. Guo N. Liu H.F. Li B.J. Yang Z.X. 2024 DEM study of the stress fields around the closed-ended displacement pile driven in sand Canadian Geotechnical Journal 61 3 549 561 10.1139/cgj-2023-0025 Open DOISearch in Google Scholar

Engin, H. K., Brinkgreve, R.B.J., Van Tol, A.F. (2015). Simplified numerical modelling of pile penetration - the press-replace technique: Simplified numerical modelling of pile penetration – PR technique. International Journal for Numerical and Analytical Methods in Geomechanics, 39(15), 1713-1734. doi: 10.1002/nag.2376. Engin H. K. Brinkgreve R.B.J. Van Tol A.F. 2015 Simplified numerical modelling of pile penetration - the press-replace technique: Simplified numerical modelling of pile penetration – PR technique International Journal for Numerical and Analytical Methods in Geomechanics 39 15 1713 1734 10.1002/nag.2376 Open DOISearch in Google Scholar

Goudarzy, M., Lavasan, A. A. (2024). Challenges in numerical modelling of screw piles installation and vertical loading based on centrifuge testing. ISSMGE. doi: 10.53243/ECPMG2024-146. Goudarzy M. Lavasan A. A. 2024 Challenges in numerical modelling of screw piles installation and vertical loading based on centrifuge testing ISSMGE 10.53243/ECPMG2024-146 Open DOISearch in Google Scholar

OPTUM Engineering. (2020). OPTUM G2 User Manual. https://www.optumengineering.com/. OPTUM Engineering 2020 OPTUM G2 User Manual https://www.optumengineering.com/ Search in Google Scholar

LimitState Ltd. (2021). LimitState GEO User Manual. https://www.limitstate.com/geo. LimitState Ltd 2021 LimitState GEO User Manual https://www.limitstate.com/geo Search in Google Scholar

Gilber, M., Smith, C. C., Haslam, I. W., Pritchard, T. J. (2010). Application of discontinuity layout optimization to geotechnical limit analysis problems. Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering. Gilber M. Smith C. C. Haslam I. W. Pritchard T. J. 2010 Application of discontinuity layout optimization to geotechnical limit analysis problems Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering Search in Google Scholar

Bałachowski, L., Kabeta, W.F., Thorel, L., Blanc, M., Dubreucq, T. (2024). Centrifuge modelling of tapered wall jacked into medium dense sand. New Developments on Structural Design. XVIII European Conference on Soil Mechanics and Geotechnical Engineering, Lisbon. Bałachowski L. Kabeta W.F. Thorel L. Blanc M. Dubreucq T. 2024 Centrifuge modelling of tapered wall jacked into medium dense sand New Developments on Structural Design. XVIII European Conference on Soil Mechanics and Geotechnical Engineering Lisbon Search in Google Scholar

Schanz, T., Vermeer, P.A., Bonnier, P.G. (2019). The hardening soil model: Formulation and verification. In R.B.J. Brinkgreve (Ed.), Beyond 2000 in Computational Geotechnics (1st ed., pp. 281-296). CRC Press (Taylor & Francis Group), London, UK. doi: 10.1201/9781315138206-27. Schanz T. Vermeer P.A. Bonnier P.G. 2019 The hardening soil model: Formulation and verification In Brinkgreve R.B.J. (Ed.), Beyond 2000 in Computational Geotechnics 1st ed. pp. 281 296 CRC Press (Taylor & Francis Group) London, UK 10.1201/9781315138206-27 Open DOISearch in Google Scholar

Andria-Ntoanina, I., Canou, J., Dupla, J. (2010). Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone. Laboratoire Navier–Géotechnique. CERMES, ENPC/LCPC. Routledge, London, UK. Andria-Ntoanina I. Canou J. Dupla J. 2010 Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone Laboratoire Navier–Géotechnique. CERMES, ENPC/LCPC Routledge London, UK Search in Google Scholar

Broere, W., Van Tol, A.F. (2006). Modelling the bearing capacity of displacement piles in sand. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 159(3), 195-206. doi: 10.1680/geng.2006.159.3.195. Broere W. Van Tol A.F. 2006 Modelling the bearing capacity of displacement piles in sand Proceedings of the Institution of Civil Engineers – Geotechnical Engineering 159 3 195 206 10.1680/geng.2006.159.3.195 Open DOISearch in Google Scholar