This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Fahmy, A., El Naggar, M.H. (2017). Axial performance of helical tapered piles in sand. Geotechnical and Geological Engineering, 35(4), 1549-1576. doi: 10.1007/s10706-017-0192-1.FahmyA.El NaggarM.H.2017Axial performance of helical tapered piles in sandGeotechnical and Geological Engineering3541549157610.1007/s10706-017-0192-1Open DOISearch in Google Scholar
Naggar, M.H.E., Sakr, M. (2000). Evaluation of axial performance of tapered piles from centrifuge tests. Canadian Geotechnical Journal, 37(6), 1295-1308. doi: 10.1139/t00-049.NaggarM.H.E.SakrM.2000Evaluation of axial performance of tapered piles from centrifuge testsCanadian Geotechnical Journal3761295130810.1139/t00-049Open DOISearch in Google Scholar
Sakr, M., Hesham El Naggar, M. (2003). Centrifuge modeling of tapered piles in sand. Geotechnical Testing Journal, 26(1), 8935. doi: 10.1520/GTJ11106J.SakrM.Hesham El NaggarM.2003Centrifuge modeling of tapered piles in sandGeotechnical Testing Journal261893510.1520/GTJ11106JOpen DOISearch in Google Scholar
Wei, J., El Naggar, M.H. (1998). Experimental study of axial behaviour of tapered piles. Canadian Geotechnical Journal, 35(4), 641-654. doi: 10.1139/t98-033.WeiJ.El NaggarM.H.1998Experimental study of axial behaviour of tapered pilesCanadian Geotechnical Journal35464165410.1139/t98-033Open DOISearch in Google Scholar
Randolph, M.F., Carter, J.P., Wroth, C.P. (1979). Driven piles in clay – The effects of installation and subsequent consolidation. Géotechnique, 29(4), 361-393. doi: 10.1680/geot.1979.29.4.361.RandolphM.F.CarterJ.P.WrothC.P.1979Driven piles in clay – The effects of installation and subsequent consolidationGéotechnique29436139310.1680/geot.1979.29.4.361Open DOISearch in Google Scholar
Robinsky, E.I., Morrison, C.F. (1964). Sand displacement and compaction around model friction piles. Canadian Geotechnical Journal, 1(2), 81-93. doi: 10.1139/t64-002.RobinskyE.I.MorrisonC.F.1964Sand displacement and compaction around model friction pilesCanadian Geotechnical Journal12819310.1139/t64-002Open DOISearch in Google Scholar
Beijer Lundberg, A., Dijkstra, J., van Tol, F. (2012). On the Modelling of Piles in Sand in the Small Geotechnical Centrifuge. Delft University of Technology, Delft, The Netherlands, p. 10.Beijer LundbergA.DijkstraJ.van TolF.2012On the Modelling of Piles in Sand in the Small Geotechnical CentrifugeDelft University of Technology, DelftThe Netherlandsp. 10Search in Google Scholar
Fu, S., Yang, Z.X., Jardine, R.J., Guo, N. (2023). Large-deformation finite-element simulation of deformation and strain fields resulting from closed-end displacement pile installation in sand. Journal of Geotechnical and Geoenvironmental Engineering, 149(6), 04023038. doi: 10.1061/JGGEFK.GTENG-10480.FuS.YangZ.X.JardineR.J.GuoN.2023Large-deformation finite-element simulation of deformation and strain fields resulting from closed-end displacement pile installation in sandJournal of Geotechnical and Geoenvironmental Engineering14960402303810.1061/JGGEFK.GTENG-10480Open DOISearch in Google Scholar
Yi, J.T., Liu, F., Zhang, T.B., Yao, K., Zhen, G. (2021). A large deformation finite element investigation of pile group installations with consideration of intervening consolidation. Applied Ocean Research, 112, 102698. doi: 10.1016/j.apor.2021.102698.YiJ.T.LiuF.ZhangT.B.YaoK.ZhenG.2021A large deformation finite element investigation of pile group installations with consideration of intervening consolidationApplied Ocean Research11210269810.1016/j.apor.2021.102698Open DOISearch in Google Scholar
Hamann, T., Qiu, G., Grabe, J. (2015). Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditions. Computers and Geotechnics, 63, 279-290. doi: 10.1016/j.compgeo.2014.10.006.HamannT.QiuG.GrabeJ.2015Application of a Coupled Eulerian–Lagrangian approach on pile installation problems under partially drained conditionsComputers and Geotechnics6327929010.1016/j.compgeo.2014.10.006Open DOISearch in Google Scholar
Konkol, J., Bałachowski, L. (2017). Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element method. Studia Geotechnica et Mechanica, 39(1), 27-38. doi: 10.1515/sgem-2017-0003KonkolJ.BałachowskiL.2017Influence of installation effects on pile bearing capacity in cohesive soils – large deformation analysis via finite element methodStudia Geotechnica et Mechanica391273810.1515/sgem-2017-0003Open DOI
Yu, H., Zhou, H., Sheil, B., Liu, H. (2022). Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clay. Canadian Geotechnical Journal, 59(12), 2050-2066. doi: 10.1139/cgj-2021-0527.YuH.ZhouH.SheilB.LiuH.2022Finite element modelling of helical pile installation and its influence on uplift capacity in strain softening clayCanadian Geotechnical Journal59122050206610.1139/cgj-2021-0527Open DOISearch in Google Scholar
Galavi, V., Martinelli, M. (2024). MPM simulation of the installation of an impact-driven pile in dry sand and subsequent axial bearing capacity. Journal of Geotechnical and Geoenvironmental Engineering, 150(4), 04024019. doi: 10.1061/JGGEFK.GTENG-11592.GalaviV.MartinelliM.2024MPM simulation of the installation of an impact-driven pile in dry sand and subsequent axial bearing capacityJournal of Geotechnical and Geoenvironmental Engineering15040402401910.1061/JGGEFK.GTENG-11592Open DOISearch in Google Scholar
Gao, L., Guo, N., Yang, Z. X., Jardine, R. J. (2022). MPM modeling of pile installation in sand: Contact improvement and quantitative analysis. Computers and Geotechnics, 151, 104943. doi: 10.1016/j.compgeo.2022.104943.GaoL.GuoN.YangZ. X.JardineR. J.2022MPM modeling of pile installation in sand: Contact improvement and quantitative analysisComputers and Geotechnics15110494310.1016/j.compgeo.2022.104943Open DOISearch in Google Scholar
Phuong, N.T.V., Tol, A.F., van Elkadi, A.S.K., Rohe, A. (2016). Numerical investigation of pile installation effects in sand using material point method. Computers and Geotechnics, 73, 58-71. doi: 10.1016/j.compgeo.2015.11.012.PhuongN.T.V.TolA.F.van ElkadiA.S.K.RoheA.2016Numerical investigation of pile installation effects in sand using material point methodComputers and Geotechnics73587110.1016/j.compgeo.2015.11.012Open DOISearch in Google Scholar
Duan, N., Cheng, Y.P., Lu, M., Wang, Z. (2021). DEM investigation of sand response during displacement pile installation. Ocean Engineering, 230, 109040. doi: 10.1016/j.oceaneng.2021.109040.DuanN.ChengY.P.LuM.WangZ.2021DEM investigation of sand response during displacement pile installationOcean Engineering23010904010.1016/j.oceaneng.2021.109040Open DOISearch in Google Scholar
Guo, N., Liu, H.F., Li, B.J., Yang, Z.X. (2024). DEM study of the stress fields around the closed-ended displacement pile driven in sand. Canadian Geotechnical Journal, 61(3), 549-561. doi: 10.1139/cgj-2023-0025.GuoN.LiuH.F.LiB.J.YangZ.X.2024DEM study of the stress fields around the closed-ended displacement pile driven in sandCanadian Geotechnical Journal61354956110.1139/cgj-2023-0025Open DOISearch in Google Scholar
Engin, H. K., Brinkgreve, R.B.J., Van Tol, A.F. (2015). Simplified numerical modelling of pile penetration - the press-replace technique: Simplified numerical modelling of pile penetration – PR technique. International Journal for Numerical and Analytical Methods in Geomechanics, 39(15), 1713-1734. doi: 10.1002/nag.2376.EnginH. K.BrinkgreveR.B.J.Van TolA.F.2015Simplified numerical modelling of pile penetration - the press-replace technique: Simplified numerical modelling of pile penetration – PR techniqueInternational Journal for Numerical and Analytical Methods in Geomechanics39151713173410.1002/nag.2376Open DOISearch in Google Scholar
Goudarzy, M., Lavasan, A. A. (2024). Challenges in numerical modelling of screw piles installation and vertical loading based on centrifuge testing. ISSMGE. doi: 10.53243/ECPMG2024-146.GoudarzyM.LavasanA. A.2024Challenges in numerical modelling of screw piles installation and vertical loading based on centrifuge testingISSMGE10.53243/ECPMG2024-146Open DOISearch in Google Scholar
OPTUM Engineering. (2020). OPTUM G2 User Manual. https://www.optumengineering.com/.OPTUM Engineering2020OPTUM G2 User Manualhttps://www.optumengineering.com/Search in Google Scholar
LimitState Ltd. (2021). LimitState GEO User Manual. https://www.limitstate.com/geo.LimitState Ltd2021LimitState GEO User Manualhttps://www.limitstate.com/geoSearch in Google Scholar
Gilber, M., Smith, C. C., Haslam, I. W., Pritchard, T. J. (2010). Application of discontinuity layout optimization to geotechnical limit analysis problems. Proceedings of the 7th European Conference on Numerical Methods in Geotechnical Engineering.GilberM.SmithC. C.HaslamI. W.PritchardT. J.2010Application of discontinuity layout optimization to geotechnical limit analysis problemsProceedings of the 7th European Conference on Numerical Methods in Geotechnical EngineeringSearch in Google Scholar
Bałachowski, L., Kabeta, W.F., Thorel, L., Blanc, M., Dubreucq, T. (2024). Centrifuge modelling of tapered wall jacked into medium dense sand. New Developments on Structural Design. XVIII European Conference on Soil Mechanics and Geotechnical Engineering, Lisbon.BałachowskiL.KabetaW.F.ThorelL.BlancM.DubreucqT.2024Centrifuge modelling of tapered wall jacked into medium dense sandNew Developments on Structural Design. XVIII European Conference on Soil Mechanics and Geotechnical EngineeringLisbonSearch in Google Scholar
Schanz, T., Vermeer, P.A., Bonnier, P.G. (2019). The hardening soil model: Formulation and verification. In R.B.J. Brinkgreve (Ed.), Beyond 2000 in Computational Geotechnics (1st ed., pp. 281-296). CRC Press (Taylor & Francis Group), London, UK. doi: 10.1201/9781315138206-27.SchanzT.VermeerP.A.BonnierP.G.2019The hardening soil model: Formulation and verificationInBrinkgreveR.B.J.(Ed.),Beyond 2000 in Computational Geotechnics1st ed.pp. 281296CRC Press (Taylor & Francis Group)London, UK10.1201/9781315138206-27Open DOISearch in Google Scholar
Andria-Ntoanina, I., Canou, J., Dupla, J. (2010). Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone. Laboratoire Navier–Géotechnique. CERMES, ENPC/LCPC. Routledge, London, UK.Andria-NtoaninaI.CanouJ.DuplaJ.2010Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotoneLaboratoire Navier–Géotechnique. CERMES, ENPC/LCPCRoutledgeLondon, UKSearch in Google Scholar
Broere, W., Van Tol, A.F. (2006). Modelling the bearing capacity of displacement piles in sand. Proceedings of the Institution of Civil Engineers – Geotechnical Engineering, 159(3), 195-206. doi: 10.1680/geng.2006.159.3.195.BroereW.Van TolA.F.2006Modelling the bearing capacity of displacement piles in sandProceedings of the Institution of Civil Engineers – Geotechnical Engineering159319520610.1680/geng.2006.159.3.195Open DOISearch in Google Scholar