Acceso abierto

Dynamic interaction between two 3D rigid surface foundations subjected to oblique seismic waves

  
28 mar 2025

Cite
Descargar portada

Figure 1:

Geometry of two rigid foundations subjected to harmonic seismic waves.
Geometry of two rigid foundations subjected to harmonic seismic waves.

Figure 2a:

Vertical discretization.
Vertical discretization.

Figure 2b:

Calculation model.
Calculation model.

Figure 3:

Influence of the vertical angle of incidence on the horizontal displacement Δx (θH = 0°; wave P). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the horizontal displacement Δx (θH = 0°; wave P). F1, foundation 1; F2, foundation 2.

Figure 4:

Influence of the vertical angle of incidence on the vertical displacement Δz (θH = 0°, P wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the vertical displacement Δz (θH = 0°, P wave). F1, foundation 1; F2, foundation 2.

Figure 5:

Influence of the vertical angle of incidence on the rotation Φy (θH= 0°; P wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the rotation Φy (θH= 0°; P wave). F1, foundation 1; F2, foundation 2.

Figure 6:

Influence of the vertical angle of incidence on the horizontal displacement Δx (θH = 0°; SV wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the horizontal displacement Δx (θH = 0°; SV wave). F1, foundation 1; F2, foundation 2.

Figure 7:

Influence of the vertical angle of incidence on the vertical displacement Δz (θH = 0°; SV wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the vertical displacement Δz (θH = 0°; SV wave). F1, foundation 1; F2, foundation 2.

Figure 8:

Influence of the vertical angle of incidence on the rotation Φy (θH=0°; SV wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the rotation Φy (θH=0°; SV wave). F1, foundation 1; F2, foundation 2.

Figure 9:

Influence of the vertical angle of incidence on the horizontal displacement Δx (θH=90°; SH wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the horizontal displacement Δx (θH=90°; SH wave). F1, foundation 1; F2, foundation 2.

Figure 10:

Influence of the vertical angle of incidence on the torsion Φz (θH = 90°; SH wave). F1, foundation 1; F2, foundation 2.
Influence of the vertical angle of incidence on the torsion Φz (θH = 90°; SH wave). F1, foundation 1; F2, foundation 2.