Analysis of numerical models of an integral bridge resting on an elastic half-space
22 dic 2024
Acerca de este artículo
Categoría del artículo: Original Study
Publicado en línea: 22 dic 2024
Páginas: 337 - 348
Recibido: 17 abr 2024
Aceptado: 11 nov 2024
DOI: https://doi.org/10.2478/sgem-2024-0026
Palabras clave
© 2024 Andrzej Helowicz, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Spring constants_
L=8 m, B=4 m | L=10 m, B=3 m | |
L=4 m, B=8 m | L=3 m, B=10 m | |
L=4 m, B=8 m | L=3 m, B=10 m | |
L=4 m, B=8 m | L=3 m, B=10 m | |
L=8 m, B=4 m | L=10 m, B=3 m | |
427,021 | 427,819 | |
457,832 | 480,236 | |
560,860 | 574,345 | |
2,540,626 | 1,650,517 | |
6,944,437 | 9,854,189 |
Material properties used in the analysis_
Soil | Loose sand and gravel [ |
80 |
|
ν | 0.35 |
ϕ | 40 (model A) |
30.8 | |
3 and 4 | |
10 and 8 | |
Bridge structure | Concrete C50/60 |
37,000 | |
ν | 0.2 |
Load applied to the structure_
SW of the bridge structure SW | 24 kN/m3 |
UDL 1 | 10 kN/m2 |
UDL 2 | 25 kN/m2 |
The characteristic value of the maximum expansion range of the uniform bridge temperature component |
Equations for spring constants for a rectangular footing [21], [22]_
Vertical stiffness | ||
|
||
Horizontal stiffness | ||
|
||
Rocking stiffness | Gorbunov-Posadov (1961) | |
|