Acceso abierto

Comparative Analysis of Single Pile with Embedded Beam Row and Volume Pile Modeling under Seismic Load


Cite

Sluis, J.; Besseling F.; Stuurwold P.H.H.; Modelling of a pile row in a 2D plane strain FE-analysis. Num. Method. Geotech. Eng. 2014, 978-1-138-00146-6. SluisJ. BesselingF. StuurwoldP.H.H. Modelling of a pile row in a 2D plane strain FE-analysis Num. Method. Geotech. Eng. 2014 978-1-138-00146-6. Search in Google Scholar

Brown, D.A.; Morrison, C.; Reese, L.C. Lateral Load Behavior of Pile Group in Sand. J. Geotech. Eng. Am. Soc. Civil Eng. 1988, Volume 114, pp. 1261–1276. BrownD.A. MorrisonC. ReeseL.C. Lateral Load Behavior of Pile Group in Sand J. Geotech. Eng. Am. Soc. Civil Eng. 1988 114 1261 1276 Search in Google Scholar

Hemel M.J.; Korff Mandy.; Peters D.J.; Analytical model for laterally loaded pile groups in layered sloping soil. Marine. Struc. 2022, 84, 103229. HemelM.J. KorffMandy. PetersD.J. Analytical model for laterally loaded pile groups in layered sloping soil Marine. Struc. 2022 84 103229 Search in Google Scholar

Cao, G.; Ding, X.; Yin, Z.; Zhou, H.; Zhou, P. A New Soil Reaction Model for Large-Diameter Monopiles in Clay. Comput. Geotech. 2021, 137, 104311. https://doi.org/10.1016/j.compgeo.2021.104311. CaoG. DingX. YinZ. ZhouH. ZhouP. A New Soil Reaction Model for Large-Diameter Monopiles in Clay Comput. Geotech. 2021 137 104311 https://doi.org/10.1016/j.compgeo.2021.104311. Search in Google Scholar

API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2014. API Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003 American Petroleum Institute Washington, DC., USA 2014 Search in Google Scholar

Wang, H.; Wang, L. Z.; Hong, Y.; He, B.; Zhu, R. H. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand. App. Ocean. Res. 2020, 101, 102196. WangH. WangL. Z. HongY. HeB. ZhuR. H. Quantifying the influence of pile diameter on the load transfer curves of laterally loaded monopile in sand App. Ocean. Res. 2020 101 102196 Search in Google Scholar

Isenhower, W. M.; Shin-Tower, W.; Gonzalo, V. L. (2016). Technical Manual for LPile 2016 (Using Data Format Version 9). Ensoft, Inc. IsenhowerW. M. Shin-TowerW. GonzaloV. L. 2016 Technical Manual for LPile 2016 (Using Data Format Version 9) Ensoft, Inc Search in Google Scholar

Reese, L. C. Behavior of Piles and Pile Groups Under Lateral Load. Federal Highway Administration Office of Engineering & Highway Operations Research and Development: Washington D.C, US, 1986. ReeseL. C. Behavior of Piles and Pile Groups Under Lateral Load Federal Highway Administration Office of Engineering & Highway Operations Research and Development Washington D.C, US 1986 Search in Google Scholar

API. Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003; American Petroleum Institute: Washington, DC., USA, 2011. API Petroleum and Natural Gas. Industries-Specific Requirements for Offshore Structures: Part 4-Geotechnical and Foundation Design Considerations ISO 19901–4:2003 American Petroleum Institute Washington, DC., USA 2011 Search in Google Scholar

Liang, F.; Chen, H.; Jia, Y. Quasi-static p-y hysteresis loop for cyclic lateral response of pile foundations in offshore platforms. Ocean. Eng., 2018, 148, 62–74. LiangF. ChenH. JiaY. Quasi-static p-y hysteresis loop for cyclic lateral response of pile foundations in offshore platforms Ocean. Eng. 2018 148 62 74 Search in Google Scholar

Hyunsung L.; Sangseom J. Simplified p-y curves under dynamic loading in dry sand. Soil. Dyn. Earth. Eng. 2018, 113, 101–111. HyunsungL. SangseomJ. Simplified p-y curves under dynamic loading in dry sand Soil. Dyn. Earth. Eng. 2018 113 101 111 Search in Google Scholar

Hammam, A.H.; Eliwa, M. Comparison Between Results of Dynamic & Static Moduli of Soil Determined by Different Methods. HBRC J. 2013, 9, 144–149. HammamA.H. EliwaM. Comparison Between Results of Dynamic & Static Moduli of Soil Determined by Different Methods HBRC J. 2013 9 144 149 Search in Google Scholar

Maheswari, R.U.; Boominathan, A.; Dodagoudar, G.R. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils. Geotech. Geo. Eng. 2010, 28, 119–137. MaheswariR.U. BoominathanA. DodagoudarG.R. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai Soils Geotech. Geo. Eng. 2010 28 119 137 Search in Google Scholar

Tsiambaos, G.; Sabatakakis, N. Empirical Estimation of Shear Wave Velocity from in Situ Tests on Soil Formations in Greece. Bull. Eng. Geo. Env. 2011, 70, 291–297. TsiambaosG. SabatakakisN. Empirical Estimation of Shear Wave Velocity from in Situ Tests on Soil Formations in Greece Bull. Eng. Geo. Env. 2011 70 291 297 Search in Google Scholar

Badan Standardisasi Nasional. Perencanaan Ketahanan Gempa Untuk Gedung dan Non Gedung [SNI 1726:2019] [Earthquake Resistance Planning for Buildings and Non-Buildings [SNI 1726:2019]]. Badan Standardisasi Nasional: Jakarta, Indonesia, 2019. Badan Standardisasi Nasional Perencanaan Ketahanan Gempa Untuk Gedung dan Non Gedung [SNI 1726:2019] [Earthquake Resistance Planning for Buildings and Non-Buildings [SNI 1726:2019]] Badan Standardisasi Nasional Jakarta, Indonesia 2019 Search in Google Scholar

Das, B.M. Principles of Foundation Engineering, 7th ed. Thomson: Toronto, 2011. DasB.M. Principles of Foundation Engineering 7th ed. Thomson Toronto 2011 Search in Google Scholar

Poulos, H.G.; Davis, E.H. Pile Foundation Analysis and Design; Wiley: New York, USA, 1980. Available online: https://trid.trb.org/view/164430 (accessed on 24 May 2022). PoulosH.G. DavisE.H. Pile Foundation Analysis and Design Wiley New York, USA 1980 Available online: https://trid.trb.org/view/164430 (accessed on 24 May 2022). Search in Google Scholar

Li, Z.; Kotronis, P.; Escoffier, S. Numerical Study of the 3D Failure Envelope of a Single Pile in Sand. Com. Geotech. 2014, 62, 11–26. LiZ. KotronisP. EscoffierS. Numerical Study of the 3D Failure Envelope of a Single Pile in Sand Com. Geotech. 2014 62 11 26 Search in Google Scholar

Sluis, J. Validation and Application of the Embedded Pile Row Feature in PLAXIS 2D. Plaxis Bulletin: Autumn issue. 2013. SluisJ. Validation and Application of the Embedded Pile Row Feature in PLAXIS 2D Plaxis Bulletin Autumn issue. 2013 Search in Google Scholar

FHWA-HIF-18-031. (2018). Geoetchnical Engineering Circular: Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Trannsportation Facilities. U.S. Department of Transportation; Federal Highway Administration. FHWA-HIF-18-031 2018 Geoetchnical Engineering Circular: Design, Analysis, and Testing of Laterally Loaded Deep Foundations that Support Trannsportation Facilities U.S. Department of Transportation; Federal Highway Administration Search in Google Scholar

Yu, X.; Abu-Farsakh, M. Y.; Yoon, S.; Tsai, C.; Zhang, Z. Implementation of LRFD of drilled shafts in Louisiana. J. Infra. System. 2012, 18(2), 103–112. YuX. Abu-FarsakhM. Y. YoonS. TsaiC. ZhangZ. Implementation of LRFD of drilled shafts in Louisiana J. Infra. System. 2012 18 2 103 112 Search in Google Scholar

Tjie-Liong, G. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems. Int. J. App. Eng. Res. 2014, 9, 8291–8311. Tjie-LiongG. Common Mistakes on the Application of Plaxis 2D in Analyzing Excavation Problems Int. J. App. Eng. Res. 2014 9 8291 8311 Search in Google Scholar

Zhang, Y.; Andersen, K. H.; & Tedesco, G. Ultimate bearing capacity of laterally loaded piles in clay–Some practical considerations. Marine. Struc. 2016, 50, 260–275. ZhangY. AndersenK. H. TedescoG. Ultimate bearing capacity of laterally loaded piles in clay–Some practical considerations Marine. Struc. 2016 50 260 275 Search in Google Scholar

Zhou, P.; Zhou, H.; Liu, H.; Li, X.; Ding, X.; Wang, Z. Analysis of lateral response of Existing Single Pile Caused by Penetration of Adjacent Pile in Undrained Clay. Comput. Geotech. 2020, 126, 103736. ZhouP. ZhouH. LiuH. LiX. DingX. WangZ. Analysis of lateral response of Existing Single Pile Caused by Penetration of Adjacent Pile in Undrained Clay Comput. Geotech. 2020 126 103736 Search in Google Scholar

Zhu, B.; Wen, K.; Kong, D.; Zhu, Z.; Wang, L. A Numerical Study on the Lateral Loading Behaviour of Offshore Tetrapod Piled Jacket Foundations in Clay. App. Ocean. Res. 2018, 75, 165–177. ZhuB. WenK. KongD. ZhuZ. WangL. A Numerical Study on the Lateral Loading Behaviour of Offshore Tetrapod Piled Jacket Foundations in Clay App. Ocean. Res. 2018 75 165 177 Search in Google Scholar

Youngho, K.; Sangseom J. Determination of depth-of-fixity point for laterally loaded vertical offshore piles: A new approach. Comput. and Goetech. 2011, 38, 248–257. YounghoK. SangseomJ. Determination of depth-of-fixity point for laterally loaded vertical offshore piles: A new approach Comput. and Goetech. 2011 38 248 257 Search in Google Scholar

Wang, H.; Wang, L.; Hong, Y.; Mašín, D.; Li, W.; He, B.; Pan, H. Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand. Ocean. Eng. 2021, 226, 108299. WangH. WangL. HongY. MašínD. LiW. HeB. PanH. Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand Ocean. Eng. 2021 226 108299 Search in Google Scholar

Zhang H.; Liu R.;, Yuan Y. Influence of spudcan-pile interaction on laterally loaded piles. Ocean. Eng. 2019, 184, 32–39. ZhangH. LiuR. YuanY. Influence of spudcan-pile interaction on laterally loaded piles Ocean. Eng. 2019 184 32 39 Search in Google Scholar

eISSN:
2083-831X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics