This work is licensed under the Creative Commons Attribution 4.0 International License.
Demchak, J., Skousen, J., McDonald, L. M. (2004). Longevity of Acid Discharges from Underground Mines Located above the Regional Water Table. J. Environ. Qual. pp. 656–668. 33DemchakJ.SkousenJ.McDonaldL. M.2004Longevity of Acid Discharges from Underground Mines Located above the Regional Water TableJ. Environ. Qual.6566683310.2134/jeq2004.656015074818Search in Google Scholar
Gao, L., Barrett, D., Chen, Y., Zhou, M., Cuddy, S., Paydar, Z., Renzullo, L. (2014). A systems model combining process-based simulation and multi-objective optimisation for strategic management of mine water. Environmental Modelling & Software. pp. 250–264. 60GaoL.BarrettD.ChenY.ZhouM.CuddyS.PaydarZ.RenzulloL.2014A systems model combining process-based simulation and multi-objective optimisation for strategic management of mine waterEnvironmental Modelling & Software2502646010.1016/j.envsoft.2014.06.020Search in Google Scholar
Gomes, C. J. B., Mendes, C. A. B., Costa, J. F. C. L. (2011). The Environmental Impact of Coal Mining: A Case Study in Brazil's Sangão Watershed, Mine Water Environ, pp. 159–168, 30. DOI 10.1007/s10230-011-0139-3.GomesC. J. B.MendesC. A. B.CostaJ. F. C. L.2011The Environmental Impact of Coal Mining: A Case Study in Brazil's Sangão WatershedMine Water Environ1591683010.1007/s10230-011-0139-3Open DOISearch in Google Scholar
Bleninger, T., Jirka G.H. (2011). Mixing zone regulation for effluent discharges into EU waters. In: Proceedings of the Institution of Civil Engineers - Water Management. pp. 387–396. 164:8BleningerT.JirkaG.H.2011Mixing zone regulation for effluent discharges into EU watersIn:Proceedings of the Institution of Civil Engineers - Water Management387396164810.1680/wama.900037Search in Google Scholar
International network for Acid Prevention. (2009). Global Acid Rock drainage Guide (GARd Guide). Available at: http://www.gardguide.comInternational network for Acid Prevention2009Global Acid Rock drainage Guide (GARd Guide)Available at: http://www.gardguide.comSearch in Google Scholar
Opitz, J., Timms, W. (2016). Mine water discharge quality – a review of classification frameworks. In: Proceedings of the International Mine Water Association. pp. 17–26, IMWA. Available at: https://www.imwa.info/docs/imwa_2016/IMWA2016_Opitz_58.pdf.OpitzJ.TimmsW.2016Mine water discharge quality – a review of classification frameworksIn:Proceedings of the International Mine Water Association1726IMWAAvailable at: https://www.imwa.info/docs/imwa_2016/IMWA2016_Opitz_58.pdf.Search in Google Scholar
Gzyl, G., Janson, E., Łabaj, P. (2017). Mine Water Discharges in Upper Silesian Coal Basin (Poland), in Bech, J., Bini, C., and Peshkevich, M. A. (Eds.) Assessment, Restoration And Reclamation Of Mining Influenced Soils. pp. 463–486. Academic Press – ElsevierGzylG.JansonE.ŁabajP.2017Mine Water Discharges in Upper Silesian Coal Basin (Poland)inBechJ.BiniC.PeshkevichM. A.(Eds.)Assessment, Restoration And Reclamation Of Mining Influenced Soils463486Academic Press – Elsevier10.1016/B978-0-12-809588-1.00017-7Search in Google Scholar
Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., Schulz, C. (2013). Salinisation of rivers: An urgent ecological issue. Environmental Pollution, 173, pp. 157–167. doi:10.1016/j.envpol.2012.10.011Cañedo-ArgüellesM.KeffordB. J.PiscartC.PratN.SchäferR. B.SchulzC.2013Salinisation of rivers: An urgent ecological issueEnvironmental Pollution17315716710.1016/j.envpol.2012.10.01123202646Open DOISearch in Google Scholar
Jirka, G.H., Bleninger, T., Burrows, R., Larsen, T. (2004). Management of point source discharges into rivers: Where do environmental quality standards in the new EC-water framework directive apply?. International Journal of River Basin Management, 2:3, pp. 225–233JirkaG.H.BleningerT.BurrowsR.LarsenT.2004Management of point source discharges into rivers: Where do environmental quality standards in the new EC-water framework directive apply?International Journal of River Basin Management2322523310.1080/15715124.2004.9635234Search in Google Scholar
Cañedo-Argüelles, M. (2020). A review of recent advances and future challenges in freshwater salinization. Limnetica 39, 185–211Cañedo-ArgüellesM.2020A review of recent advances and future challenges in freshwater salinizationLimnetica3918521110.23818/limn.39.13Search in Google Scholar
World Meteorological Organization (WMO). (2013). Planning of water quality monitoring systems. Technical Report Series No. 03. No. 1113 Available at: https://library.wmo.int/doc_num.php?explnum_id=7821World Meteorological Organization (WMO)2013Planning of water quality monitoring systemsTechnical Report Series No. 03. No. 1113Available at: https://library.wmo.int/doc_num.php?explnum_id=7821Search in Google Scholar
Soroko, K. Danis, M. Gola, S. Turkiewicz, W. (2015). Proposal of salt deposit utilization in the range of ventilation and aero logical natural hazards on the level of copper ore deposit within “GGP” area. CUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud, nr 3 (76), pp. 115–130.SorokoK.DanisM.GolaS.TurkiewiczW.2015Proposal of salt deposit utilization in the range of ventilation and aero logical natural hazards on the level of copper ore deposit within “GGP” areaCUPRUM Czasopismo Naukowo-Techniczne Górnictwa Rud376115130Search in Google Scholar
Zieliński, S., Stefanek, P., Kostecki, S.W. (2021). Zarządzanie zasobami wody przemysłowej na przykładzie OUOW Żelazny Most. In: Bezpieczeństwo Budowli Hydrotechnicznych. Edited by Winter, J. Winter, J. Wita, A. Popielski, P. Sieinski, E. Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut Badawczy, Warszawa pp. 63–72.ZielińskiS.StefanekP.KosteckiS.W.2021Zarządzanie zasobami wody przemysłowej na przykładzie OUOW Żelazny MostIn:Bezpieczeństwo Budowli HydrotechnicznychEdited byWinterJ.WinterJ.WitaA.PopielskiP.SieinskiE.Instytut Meteorologii i Gospodarki Wodnej Państwowy Instytut BadawczyWarszawa6372Search in Google Scholar
Instytut OZE. (2018). Projekt budowlany: Wykonanie nowej instalacji rozprowadzającej w dnie rzeki Odra [Unpublished]. Kielce.Instytut OZE2018Projekt budowlany: Wykonanie nowej instalacji rozprowadzającej w dnie rzeki Odra[Unpublished].KielceSearch in Google Scholar
Jarvis, A. P., Davis, J. E., Orme, P. H. A., Potter, H. A. B., Gandy, C. J. (2019). Predicting the Benefits of Mine Water Treatment under Varying Hydrological Conditions using a Synoptic Mass Balance Approach, Environ. Sci. Technol., 53, pp. 702–709.JarvisA. P.DavisJ. E.OrmeP. H. A.PotterH. A. B.GandyC. J.2019Predicting the Benefits of Mine Water Treatment under Varying Hydrological Conditions using a Synoptic Mass Balance ApproachEnviron. Sci. Technol.5370270910.1021/acs.est.8b0604730566333Search in Google Scholar
Kruse, N. A., Stoertz, M. W., Green, D. H., Bowman, J. R., Lopez, D. L. (2014). Acidity Loading Behavior in Coal-Mined Watersheds, Mine Water Environ 33, pp. 177–186. DOI 10.1007/s10230-014-0269-5.KruseN. A.StoertzM. W.GreenD. H.BowmanJ. R.LopezD. L.2014Acidity Loading Behavior in Coal-Mined WatershedsMine Water Environ3317718610.1007/s10230-014-0269-5Open DOISearch in Google Scholar
Mack, B., Skousen, J., McDonald, L. M. (2015) Effect of Flow Rate on Acidity Concentration from Above-Drainage Underground Mines. Mine Water Environ 34, pp. 50–58. DOI 10.1007/s10230-014-0278-4MackB.SkousenJ.McDonaldL. M.2015Effect of Flow Rate on Acidity Concentration from Above-Drainage Underground MinesMine Water Environ34505810.1007/s10230-014-0278-4Open DOISearch in Google Scholar
Jirka, G.H. (2001). Large scale flow structures and mixing processes in shallow flows. J. of Hydraulic Research 39(6), pp. 567–573. DOI:10.1080/00221686.2001.9628285JirkaG.H.2001Large scale flow structures and mixing processes in shallow flowsJ. of Hydraulic Research39656757310.1080/00221686.2001.9628285Open DOISearch in Google Scholar
Ritta, A. G. S. L., Almeida, T. R., Chacaltana, J. T. A., Moreira, R. M. (2020). Numerical Analysis of the Effluent Dispersion in Rivers with Different Longitudinal Diffusion Coefficients, Journal of Applied Fluid Mechanics, Vol. 13, No. 5, pp. 1551–1559, 2020. DOI: 10.36884/jafm.13.05.31015.RittaA. G. S. L.AlmeidaT. R.ChacaltanaJ. T. A.MoreiraR. M.2020Numerical Analysis of the Effluent Dispersion in Rivers with Different Longitudinal Diffusion CoefficientsJournal of Applied Fluid Mechanics13515511559202010.36884/jafm.13.05.31015Open DOISearch in Google Scholar
Kostecki, S.W. (2008). Numerical modelling of flow through moving water-control gates by vortex method. Part I – problem formulation. Archives of Civil and Mechanical Engineering 8(3), pp. 73–89.KosteckiS.W.2008Numerical modelling of flow through moving water-control gates by vortex method. Part I – problem formulationArchives of Civil and Mechanical Engineering83738910.1016/S1644-9665(12)60164-2Search in Google Scholar
Yakhot, V., Smith, L.M. (1992). The Renormalization Group, the ɛ-Expansion and Derivation of Turbulence Models. Journal of Scientific Computing, 7, No. 1.YakhotV.SmithL.M.1992The Renormalization Group, the ɛ-Expansion and Derivation of Turbulence ModelsJournal of Scientific Computing7110.1007/BF01060210Search in Google Scholar
Sánchez-Juny, M., Triadú, A., Andreu, A., Bladé, E. (2019). Hydrodynamic Determination of the Kinematic Viscosity of Waste Brines. ACS Omega 4 (25), pp. 20987–20999. DOI: 10.1021/acsomega.9b02164Sánchez-JunyM.TriadúA.AndreuA.BladéE.2019Hydrodynamic Determination of the Kinematic Viscosity of Waste BrinesACS Omega425209872099910.1021/acsomega.9b02164692127331867490Open DOISearch in Google Scholar