Acceso abierto

Evaluation of Tunnel Contour Quality Index on the Basis of Terrestrial Laser Scanning Data


Cite

Kim, Y., & Bruland, A. (2019). Analysis and evaluation of tunnel contour quality index. Automation in Construction, 99, 223–237. KimY. BrulandA. 2019 Analysis and evaluation of tunnel contour quality index Automation in Construction 99 223 237 10.1016/j.autcon.2018.12.008 Search in Google Scholar

Costamagna, E., Oggeri, C., Segarra, P., Castedo, R., & Navarro, J. (2018). Assessment of contour profile quality in D&B tunnelling. Tunnelling and Underground Space Technology, 75, 67–80. CostamagnaE. OggeriC. SegarraP. CastedoR. NavarroJ. 2018 Assessment of contour profile quality in D&B tunnelling Tunnelling and Underground Space Technology 75 67 80 10.1016/j.tust.2018.02.007 Search in Google Scholar

Soilán, M., Sánchez-Rodríguez, A., del Río-Barral, P., Perez-Collazo, C., Arias, P., & Riveiro, B. (2019). Review of laser scanning technologies and their applications for road and railway infrastructure monitoring. Infrastructures, 4(4), 58. SoilánM. Sánchez-RodríguezA. del Río-BarralP. Perez-CollazoC. AriasP. RiveiroB. 2019 Review of laser scanning technologies and their applications for road and railway infrastructure monitoring Infrastructures 4 4 58 10.3390/infrastructures4040058 Search in Google Scholar

Zogg, H. M., & Ingensand, H. (2008). Terrestrial laser scanning for deformation monitoring: Load tests on the Felsenau Viaduct (CH). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B5), 555–562. ZoggH. M. IngensandH. 2008 Terrestrial laser scanning for deformation monitoring: Load tests on the Felsenau Viaduct (CH) International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 37 B5 555 562 Search in Google Scholar

Xu, H., Li, H., Yang, X., Qi, S., & Zhou, J. (2019). Integration of terrestrial laser scanning and nurbs modeling for the deformation monitoring of an earth-rock dam. Sensors, 19(1), 22. XuH. LiH. YangX. QiS. ZhouJ. 2019 Integration of terrestrial laser scanning and nurbs modeling for the deformation monitoring of an earth-rock dam Sensors 19 1 22 10.3390/s19010022 Search in Google Scholar

Lenda, G., Siwiec, J., & Kudrys, J. (2020). Multi-Variant TLS and SfM Photogrammetric Measurements Affected by Different Factors for Determining the Surface Shape of a Thin-Walled Dome. Sensors, 20(24), 7095. LendaG. SiwiecJ. KudrysJ. 2020 Multi-Variant TLS and SfM Photogrammetric Measurements Affected by Different Factors for Determining the Surface Shape of a Thin-Walled Dome Sensors 20 24 7095 10.3390/s20247095 Search in Google Scholar

Brazeal, R. (2013). Low cost spherical registration targets for terrestrial laser scanning. SUR 6905-point cloud analysis. BrazealR. 2013 Low cost spherical registration targets for terrestrial laser scanning SUR 6905-point cloud analysis Search in Google Scholar

Bazarnik, M. (2014). The potential of terrestrial 3D laser scanning in inventory and monitoring of tunnel railway (in Polish). Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne. BazarnikM. 2014 The potential of terrestrial 3D laser scanning in inventory and monitoring of tunnel railway (in Polish) Zeszyty Naukowo-Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie. Seria: Materiały Konferencyjne Search in Google Scholar

Suchocki, C., Damięcka-Suchocka, M., & Katzer, J. 5. Influence of factors on the value of the reflection strength of a laser beam in terrestrial laser scanning (in Polish). SuchockiC. Damięcka-SuchockaM. KatzerJ. 5. Influence of factors on the value of the reflection strength of a laser beam in terrestrial laser scanning (in Polish) Search in Google Scholar

Lemmens, M. (2011). Terrestrial laser scanning. In Geo-information (pp. 101–121). Springer, Dordrecht. LemmensM. 2011 Terrestrial laser scanning In Geo-information 101 121 Springer Dordrecht 10.1007/978-94-007-1667-4_6 Search in Google Scholar

Remondino, F. (2003). From point cloud to surface: the modeling and visualization problem. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 34. RemondinoF. 2003 From point cloud to surface: the modeling and visualization problem International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34 Search in Google Scholar

Sanchez, T., Conciatori, D., Ben-Ftima, M., & Massicotte, B. (2020). Terrestrial laser scanning for structural inspection with Kriging interpolation. Structure and Infrastructure Engineering, 1–10. SanchezT. ConciatoriD. Ben-FtimaM. MassicotteB. 2020 Terrestrial laser scanning for structural inspection with Kriging interpolation Structure and Infrastructure Engineering 1 10 10.1080/15732479.2020.1861469 Search in Google Scholar

Wang, W., Zhao, W., Huang, L., Vimarlund, V., & Wang, Z. (2014). Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition), 1(5), 325–337. WangW. ZhaoW. HuangL. VimarlundV. WangZ. 2014 Applications of terrestrial laser scanning for tunnels: a review Journal of Traffic and Transportation Engineering (English Edition) 1 5 325 337 10.1016/S2095-7564(15)30279-8 Search in Google Scholar

Xie, X., & Lu, X. (2017). Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning. Underground Space, 2(1), 16–29. XieX. LuX. 2017 Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning Underground Space 2 1 16 29 10.1016/j.undsp.2017.02.001 Search in Google Scholar

Yang, Q., Zhang, Z., Liu, X., & Ma, S. (2017). Development of laser scanner for full cross-sectional deformation monitoring of underground gateroads. Sensors, 17(6), 1311. YangQ. ZhangZ. LiuX. MaS. 2017 Development of laser scanner for full cross-sectional deformation monitoring of underground gateroads Sensors 17 6 1311 10.3390/s17061311549247028590449 Search in Google Scholar

Cheng, Y. J., Qiu, W., & Lei, J. (2016). Automatic extraction of tunnel lining cross-sections from terrestrial laser scanning point clouds. Sensors, 16(10), 1648. ChengY. J. QiuW. LeiJ. 2016 Automatic extraction of tunnel lining cross-sections from terrestrial laser scanning point clouds Sensors 16 10 1648 10.3390/s16101648 Search in Google Scholar

Han, S., Cho, H., Kim, S., Jung, J., & Heo, J. (2013). Automated and efficient method for extraction of tunnel cross sections using terrestrial laser scanned data. Journal of computing in civil engineering, 27(3), 274–281. HanS. ChoH. KimS. JungJ. HeoJ. 2013 Automated and efficient method for extraction of tunnel cross sections using terrestrial laser scanned data Journal of computing in civil engineering 27 3 274 281 10.1061/(ASCE)CP.1943-5487.0000211 Search in Google Scholar

Barla, G., Antolini, F., & Gigli, G. (2016). 3D Laser scanner and thermography for tunnel discontinuity mapping. Geomechanics and Tunnelling, 9(1), 29–36. BarlaG. AntoliniF. GigliG. 2016 3D Laser scanner and thermography for tunnel discontinuity mapping Geomechanics and Tunnelling 9 1 29 36 10.1002/geot.201500050 Search in Google Scholar

Tan, K., Cheng, X., Ju, Q., & Wu, S. (2016). Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels. IEEE geoscience and remote sensing letters, 13(11), 1711–1715. TanK. ChengX. JuQ. WuS. 2016 Correction of mobile TLS intensity data for water leakage spots detection in metro tunnels IEEE geoscience and remote sensing letters 13 11 1711 1715 10.1109/LGRS.2016.2605158 Search in Google Scholar

Živec, T., Anžur, A., & Verbovšek, T. (2019). Determination of rock type and moisture content in flysch using TLS intensity in the Elerji quarry (south-west Slovenia). Bulletin of Engineering Geology and the Environment, 78(3), 1631–1643. ŽivecT. AnžurA. VerbovšekT. 2019 Determination of rock type and moisture content in flysch using TLS intensity in the Elerji quarry (south-west Slovenia) Bulletin of Engineering Geology and the Environment 78 3 1631 1643 10.1007/s10064-018-1245-2 Search in Google Scholar

Pejić, M. (2013). Design and optimisation of laser scanning for tunnels geometry inspection. Tunnelling and underground space technology, 37, 199–206. PejićM. 2013 Design and optimisation of laser scanning for tunnels geometry inspection Tunnelling and underground space technology 37 199 206 10.1016/j.tust.2013.04.004 Search in Google Scholar

Thiel, K. (1995). Physico-mechanical properties and models of rock massifs of the Polish flysch Carpathians (in Polish). IBW PAN Gdańsk, Biblioteka Naukowa Hydrotechnika, (19). ThielK. 1995 Physico-mechanical properties and models of rock massifs of the Polish flysch Carpathians (in Polish) IBW PAN Gdańsk, Biblioteka Naukowa Hydrotechnika 19 Search in Google Scholar

Faro Focus Laser Scanners, (2021), FARO, https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners Faro Focus Laser Scanners 2021 FARO https://www.faro.com/en/Products/Hardware/Focus-Laser-Scanners Search in Google Scholar

SCENE User Manual, (2020), FARO, https://faro.app.box.com/s/uivkgf3jyrxcxn5ofazlohjnadddknhr/file/730718082810 SCENE User Manual 2020 FARO https://faro.app.box.com/s/uivkgf3jyrxcxn5ofazlohjnadddknhr/file/730718082810 Search in Google Scholar

ReCap Support and learning, (2021), Autodesk, https://knowledge.autodesk.com/support/recap/learn?fbclid=IwAR0tmnHo5wFwwVauarBL_dUZruBnsjZOvlbQDVoqFL_fry5QfqgAU71jvPw ReCap Support and learning 2021 Autodesk https://knowledge.autodesk.com/support/recap/learn?fbclid=IwAR0tmnHo5wFwwVauarBL_dUZruBnsjZOvlbQDVoqFL_fry5QfqgAU71jvPw Search in Google Scholar

AutoCAD Civil 3D 2010 User's Guide, (2009), Autodesk, http://images.autodesk.com/adsk/files/civil3d_ug.pdf?fbclid=IwAR1k-Im5CB61VP7GpvuNbWZh3Fumhd9ndLgQFSTHYmwAuonzNUIdAz67Lls AutoCAD Civil 3D 2010 User's Guide 2009 Autodesk http://images.autodesk.com/adsk/files/civil3d_ug.pdf?fbclid=IwAR1k-Im5CB61VP7GpvuNbWZh3Fumhd9ndLgQFSTHYmwAuonzNUIdAz67Lls Search in Google Scholar

Niedbalski, Z., Małkowski, P., & Majcherczyk, T. (2018). Application of the NATM method in the road tunneling works in difficult geological conditions–The Carpathian flysch. Tunnelling and Underground Space Technology, 74, 41–59. NiedbalskiZ. MałkowskiP. MajcherczykT. 2018 Application of the NATM method in the road tunneling works in difficult geological conditions–The Carpathian flysch Tunnelling and Underground Space Technology 74 41 59 10.1016/j.tust.2018.01.003 Search in Google Scholar

Ye, Z., & Zhang, C. (2020). Influence of Loose Contact between Tunnel Lining and Surrounding Rock on the Safety of the Tunnel Structure. Symmetry, 12(10), 1733. YeZ. ZhangC. 2020 Influence of Loose Contact between Tunnel Lining and Surrounding Rock on the Safety of the Tunnel Structure Symmetry 12 10 1733 10.3390/sym12101733 Search in Google Scholar

Kim, Y., & Bruland, A. (2015). A study on the establishment of Tunnel Contour Quality Index considering construction cost. Tunnelling and Underground Space Technology, 50, 218–225. KimY. BrulandA. 2015 A study on the establishment of Tunnel Contour Quality Index considering construction cost Tunnelling and Underground Space Technology 50 218 225 10.1016/j.tust.2015.07.010 Search in Google Scholar

Geometrical product specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters (ISO 25178–2:2012) Geometrical product specifications (GPS) Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters (ISO 25178–2:2012) Search in Google Scholar

eISSN:
2083-831X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics