Acceso abierto

Concrete surface evaluation based on the reflected TLS laser beam’s intensity image classification


Dynamically developing terrestrial laser scanning technology (TLS)provides modern surveying tools, that is, scanning total stations and laser scanners. Owing to these instruments, periodic control surveys of concrete dams were performed as a part of geodetic monitoring yield point models characterised by quasicontinuity. Using the results of such measurements as a base, one can carry out a number of geometric analyses as well as acquire information for detailed analytical and calculative considerations.

The scanner, similar to total station, by determining distances and angles, identifies spatial coordinates (X, Y, Z) of the surveyed points. Registration of the reflected laser beam’s intensity value (Intensity) emitted by the scanner provides additional information on the surveyed object. Owing to high working speed and the large amount of the collected data, the scanners became an indispensable tool for geodesists.

The article assesses the possibility of application of terrestrial laser scanning in surveying changes in the surface of a concrete dam based on the experimental measurements. The condition of the dam’s downstream concrete wall was evaluated. The evaluation included changes in the surface’s roughness, cracks, seepage points, erosion caused by plant overgrowth and the degressive durability parameter of the used material (concrete).

The article presents an example of the application of the results of a laser scan in the assessment of the condition of a water dam’s external concrete surfaces. The results of experimental measurements were analysed – the results of a scan of the downstream concrete wall of a dam in Ecker (Germany) using two laser scanners characterised by different technical parameters, that is, laser wavelength (laser’s colour), range, definable point density, method of distance measurement – Leica C10, Z+F Imager 5006h. The measurement was carried out in the same weather conditions from the same sites of the test base.

The results of the measurements were analysed using, inter alia, statistical methods by defining template fields and supervised and unsupervised classification methods in reference to the selected fragments of the surface characterised by known concrete surface properties. Various classification algorithms were used. The obtained results make it possible to assess the suitability of the proposed methodology of evaluating the concrete surface’s condition and establish tool selection principles to match the practical application requirements.

Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics