Acceso abierto

Technical Notoe: Prediction of Static Liquefaction by Nor Sand Constitutive Model


Cite

[1] ALARCON-GUZMAN A., LEONARDS G., CHAMEAU J.L., Undrained monotonic and cyclic strength of sands, ASCE J. Geotech. Engng, 1988, 114, 10, 1089-1109.10.1061/(ASCE)0733-9410(1988)114:10(1089)Search in Google Scholar

[2] BEEN K., JEFFERIES M.G., HACHEY J., The critical states of sands, Geotechnique, 1991, 41, 3, 365-381.10.1680/geot.1991.41.3.365Search in Google Scholar

[3] BOUKPETI N., MRÓZ Z., DRESCHER A., A model for static liquefaction in triaxial compression and extension, Can. Geotech. J., 2002, 39, 1243-1253.10.1139/t02-066Search in Google Scholar

[4] CASAGRANDE A., Characteristics of cohesionless soils affecting the stability of earth fills, Journal of Boston Society of Civil Engineers, 1936, 23, 257-276.Search in Google Scholar

[5] CASAGRANDE A., Liquefaction and cyclic deformation of sands, a critical review, Proc. 5th Pan-American Conf. on Soil Mech. and Found. Engng, Buenos Aires, 1975, 5, 79-133.Search in Google Scholar

[6] CASTRO G., Liquefaction and cyclic mobility of saturated sands, J. Geotech. Engng Div., ASCE, 1975, 101, 6, 551-569.10.1061/AJGEB6.0000173Search in Google Scholar

[7] CASTRO G., POULOS S.J., Factors affecting liquefaction and cyclic mobility. J. Geotech. Engng Div. ASCE, 1977, 103, 501-516.10.1061/AJGEB6.0000433Search in Google Scholar

[8] DARVE F., Incrementally non-linear constitutive relationships, in Darve F. (ed.), Geomaterials Constitutive Equations and Modelling, Elsevier Applied Science, London 1990, 213-238.10.1201/9781482296532Search in Google Scholar

[9] DARVE F., LABANIEH S., Incremental constitutive law for sands and clays: simulation of monotonic and cyclic tests, Int. J. Numer. Anal. Meth. Geomech., 1982, 6, 243-275.10.1002/nag.1610060209Search in Google Scholar

[10] DRUCKER D.C., GIBSON R.E., HENKEL D.J., Soil mechanics and work hardening theories of plasticity, Trans. ASCE, 1957, 122, 338-346.10.1061/TACEAT.0007430Search in Google Scholar

[11] DE GROOT M.B., BOLTON M.D., FORAY P., MEIJERS P., PALMER A.C., SANDVEN R., SAWICKI A., TEH T.C., Physics of Liquefaction Phenomena around Marine Structures, Journal of Waterway, Port, Coastal, and Ocean Engineering, 2006, Vol. 132, No. 4, July 1, 227-243.10.1061/(ASCE)0733-950X(2006)132:4(227)Search in Google Scholar

[12] ISHIHARA K., TATSUOKA F., YASUDA V., Undrained deformation and liquefaction of sand under cyclic stresses, Soils and Foundations, 1975, 15, 29-44.10.3208/sandf1972.15.29Search in Google Scholar

[13] ISHIHARA K., Liquefaction and flow failure during earthquakes, Geotechnique, 1993, 43, No. 3, 351-415.10.1680/geot.1993.43.3.351Search in Google Scholar

[14] JEFFERIES M.G., Nor-Sand: a simple critical state model for sand, Geotechnique, 1993, 43, No 1, 91-103.10.1680/geot.1993.43.1.91Search in Google Scholar

[15] JEFFERIES M.G., BEEN K., Soil Liquefaction. A critical state approach, Taylor & Francis, London and New York 2006.10.4324/9780203301968Search in Google Scholar

[16] KOLYMBAS D., An outline of hypoplasticity, Archive of Applied Mechanics, 1991, 61, 143-151.10.1007/BF00788048Search in Google Scholar

[17] LADE P.V., Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces, Int. J. Solids and Structures, 1977, 13, 1019-1035.10.1016/0020-7683(77)90073-7Search in Google Scholar

[18] LI X.S., DAFALIAS Y.F., WANG Z.-L., State dependent dilatancy in critical state constitutive modelling of sand, Canadian Geotechnical Journal, 1999, 36, 599-611.10.1139/t99-029Search in Google Scholar

[19] MARCUSON W.F. III., Definition of terms related to liquefaction, J. Geotech. Eng. Div., Am. Soc. Civ. Eng., 1978, 104(9), 1197-1200.10.1061/AJGEB6.0000688Search in Google Scholar

[20] NOVA R., WOOD D.M., A constitutive model for sand in triaxial compression, Int. J. Num. Anal. Meth. Geomech., 1979, 3, 255-278.10.1002/nag.1610030305Search in Google Scholar

[21] PASTOR M., ZIENKIEWICZ O.C., CHAN A.H.C., Generalized plasticity and the modelling of soil behaviour, Int. J. Num. Anal. Meth. Geomech., 1990, 14, 151-190.10.1002/nag.1610140302Search in Google Scholar

[22] PASTOR M., ZIENKIEWICZ O.C., LEUNG K.H., A simple model for transient soil loading in earthquake analysis. II: Nonassociative model for sands, Int. J. Numer. Anal. Methods in Geomech., 1985, 9, 477-498.10.1002/nag.1610090506Search in Google Scholar

[23] POULOS S.J., The steady state of deformation, J. Geotech. Eng. Div., ASCE, 1981, 107, 5, 553-562.10.1061/AJGEB6.0001129Search in Google Scholar

[24] ROSCOE K., SCHOFIELD A.N., WROTH C.P., On the yielding of soils, Geotechnique, 1958, 8, 1, 22-53.10.1680/geot.1958.8.1.22Search in Google Scholar

[25] SAWICKI A., ŚWIDZIŇSKI W., Modelling the pre-failure instabilities of sand, Computers and Geotechnics, 2010, 37, 781-788.10.1016/j.compgeo.2010.06.004Search in Google Scholar

[26] SLADEN J.A., D'HOLLANDER R.D., KRAHN J., The liquefaction of sands, a collapse surface approach, Can. Geotech. J., 1985, 22, 4, 564-578.10.1139/t85-076Search in Google Scholar

[27] ŚWIDZIŇSKI W., Compaction and liquefaction mechanisms of non-cohesive soils, in Polish, Wydawnictwo IBW PAN, Gdansk 2006.Search in Google Scholar

[28] VAID Y.P., CHUNG E.K.F., KUERBIS R.H., Stress path and steady state, Canadian Geotech. J., 1990, Vol. 27, 1-7.10.1139/t90-001Search in Google Scholar

[29] VERDUGO R., ISHIHARA K., The steady state of sandy soils, Soils and Foundations, 1996, Vol. 36, No. 2, 81-91.10.3208/sandf.36.2_81Search in Google Scholar

[30] WU W., NIEMUNIS A., Failure criterion, flow rule and dissipation function derived from hypoplasticity, Mech. Cohesive- Frictional Mater., 1996, 1, 145-163.10.1002/(SICI)1099-1484(199604)1:2<145::AID-CFM8>3.0.CO;2-9Search in Google Scholar

[31] YAMAMURO J.A., LADE P.V., Static liquefaction of very loose sands, Can. Geotech. J., 1997, 34(6), 905-917.10.1139/t97-057Search in Google Scholar

[32] YAMAMURO J.A., LADE P.V., Steady State Concepts and Static Liquefaction of Silty Sands, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(9), 868-877.10.1061/(ASCE)1090-0241(1998)124:9(868)Search in Google Scholar

[33] YAMAMURO J.A., LADE P.V., Experiments and modelling of silty sands susceptible to static liquefaction, Mechanics of Cohesive-Frictional Materials, Wiley, 1999, Vol. 4, No. 6, 545-564.10.1002/(SICI)1099-1484(199911)4:6<545::AID-CFM73>3.0.CO;2-OSearch in Google Scholar

[34] YOUD T.L., IDRISS I., ANDRUS R., ARANGO I., CASTRO G., CHRISTIAN J., DOBRY R., FINN W., HARDER L. JR., HYNES M., ISHIHARA K., KOESTER J., LIAO S., MARCUSON W., III, MARTIN G., MITCHELL J., MORIWAKI Y., POWER M., ROBERTSON P., SEED R., STOKOE K. II, Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of Soils, J. Geotech. Geoenviron. Eng., 2001, 127 (10), 817-833.10.1061/(ASCE)1090-0241(2001)127:10(817)Search in Google Scholar

[35] ZIENKIEWICZ O.C., MRÓZ Z., Generalized plasticity formulation and application to geomechanics, In: Mechanics of Engineering Materials, Eds C.S. Desai, R.H. Gallaher, John Wiley and Sons, 1985.Search in Google Scholar

[36] ZIENKIEWICZ O.C., LEUNG K.H., PASTOR M., A simple model for transient soil loading in earthquake analysis. I: Basic model and its application, Int. J. Numer. Anal. Methods in Geomech., 1985, 9, 953-976.10.1002/nag.1610090505Search in Google Scholar

eISSN:
2083-831X
ISSN:
0137-6365
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Geosciences, other, Materials Sciences, Composites, Porous Materials, Physics, Mechanics and Fluid Dynamics