Acceso abierto

Impact of progeny size on genetic parameter estimation and selection gain in progeny trials of Eucalyptus spp.

, , , ,  y   
24 may 2025

Cite
Descargar portada

Amâncio MR, Andrade MC, Paludeto JGZ, et al (2020) Accuracy of genetic parameters estimation and prediction of genotypic values in eucalyptus using different plot types. Cerne 26:482–490. https://doi.org/10.1590/01047760202026042710 Search in Google Scholar

Baccarin FJB, Brondani GE, de Almeida LV, et al (2015) Vegetative rescue and cloning of Eucalyptus benthamii selected adult trees. New For 46:465–483. https://doi.org/10.1007/S11056-015-9472-X/TABLES/7 Search in Google Scholar

Bates D, Maechler M, Bolker B, et al (2022) Linear Mixed-Effects Models using “Eigen” and S4 [R package lme4 version 1.1-30]. CRAN Search in Google Scholar

Benavente CAT, Pinto CABP (2012) Selection intensities of families and clones in potato breeding. Ciência e Agrotecnologia 36:60–68. https://doi.org/10.1590/S1413-70542012000100008 Search in Google Scholar

Bernardo R (2020) Reinventing quantitative genetics for plant breeding: something old, something new, something borrowed, something BLUE. Hered 2020 1256 125:375–385. https://doi.org/10.1038/s41437-020-0312-1 Search in Google Scholar

Bison O, Ramalho MAP, Peçanha Rezende GDS, et al (2007) Combining ability of elite clones of Eucalyptus grandis and Eucalyptus urophylla with Eucalyptus globulus. Genet Mol Biol 30:417–422. https://doi.org/10.1590/S1415-47572007000300019 Search in Google Scholar

Brizola GEA, Peres FSB, Silva PHM, et al (2024) Maximizing Eucalyptus pilularis progeny selection using a parentage matrix obtained with microsatellite markers. Euphytica 220:1–13. https://doi.org/10.1007/S10681-024-03356-9/FIGURES/2 Search in Google Scholar

Butler DG, Cullis BR, Gilmour AR, et al (2017) ASReml-R Reference Manual Version 4 ASReml estimates variance components under a general linear mixed model by residual maximum likelihood (REML). Hemel Hempstead, UK Search in Google Scholar

Castro CA de O, Resende RT, Bhering LL, Cruz CD (2016) Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. Ciência Rural 46:1585–1593. https://doi.org/10.1590/0103-8478CR20150645 Search in Google Scholar

Chaves SFS, Dias LAS, Alves RS, et al (2024) Realized genetic gain with reciprocal recurrent selection in a Eucalyptus breeding program. Tree Genet Genomes 2024 206 20:1–13. https://doi.org/10.1007/S11295-024-01678-2 Search in Google Scholar

Danusevičius D, Lindgren D (2004) Progeny testing preceded by phenotypic pre-selection - Timing considerations. Silvae Genet 53:20–26. https://doi.org/10.1515/SG-2004-0004 Search in Google Scholar

Doran JC, Matheson AC (1994) Genetic parameters and expected gains from selection for monoterpene yields in Petford Eucalyptus camaldulensis. New For 1994 82 8:155–167. https://doi.org/10.1007/BF00028191 Search in Google Scholar

Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Essex, England Search in Google Scholar

Gilmour AR, Thompson R, Cullis BR (1995) Average Information REML: An Efficient Algorithm for Variance Parameter Estimation in Linear Mixed Models. Biometrics 51:1440. https://doi.org/10.2307/2533274 Search in Google Scholar

Griffin AR (2014) Clones or improved seedlings of Eucalyptus? Not a simple choice. Int For Rev 16:216–224. https://doi.org/10.1505/146554814811724793 Search in Google Scholar

Hannrup B, Jansson G, Danell Ö (2007) Comparing gain and optimum test size from progeny testing and phenotypic selection in Pinus sylvestris. Can J For Res 37:1227–1235. https://doi.org/10.1139/X07-005 Search in Google Scholar

Hodge GR, Volker PW, Potts BM, Owen J V. (1996) A comparison of genetic information from open-pollinated and control- pollinated progeny tests in two eucalypt species. Theor Appl Genet 92:53–63. https://doi.org/10.1007/BF00222951/METRICS Search in Google Scholar

Lee SH, Dahali R, Nik Hashim NH, et al (2023) Eucalyptus plantation worldwide, its hybridization and cloning development. Eucalyptus Eng Wood Prod Other Appl 1–15. https://doi.org/10.1007/978-981-99-7919-6_1/TABLES/2 Search in Google Scholar

Lima JL, de Souza JC, Ramalho MAP, et al (2011) Early selection of parents and trees in Eucalyptus full-sib progeny tests. Crop Breed Appl Biotechnol 11:10–16. https://doi.org/10.1590/S1984-70332011000100002 Search in Google Scholar

Lloyd DG (1987) Selection of Offspring Size at Independence and Other Size-Versus-Number Strategies. https://doi.org/101086/284676129:800–817. https://doi.org/10.1086/284676 Search in Google Scholar

Luikart G, Cornuet JM (1999) Estimating the Effective Number of Breeders From Heterozygote Excess in Progeny. Genetics 151:1211–1216. https://doi.org/10.1093/GENETICS/151.3.1211 Search in Google Scholar

Lush JL (1935) Progeny Test and Individual Performance as Indicators of an Animal’s Breeding Value. J Dairy Sci 18:1–19. https://doi.org/10.3168/JDS.S0022-0302(35)93109-5 Search in Google Scholar

Nogueira TAPC, Nunes ACP, Dos Santos GA, et al (2019) Estimativa de parâmetros genéticos em progênies de irmãos completos de eucalipto e otimização de seleção. Sci For Sci 47:451–462. https://doi.org/10.18671/SCIFOR.V47N123.07 Search in Google Scholar

Perek M, Hodge G, Tambarussi EV, et al (2022) Predicted genetic gains for growth traits and wood resistance in Pinus maximinoi and Pinus tecunumanii. Crop Breed Appl Biotechnol 22:2022. https://doi.org/10.1590/1984-70332022V22N2A23 Search in Google Scholar

Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228. https://doi.org/10.1007/S10681-007-9449-8/FIGURES/4 Search in Google Scholar

R Core Team D (2019) R: A Language and Environment for Statistical Computing Ramalho MAP, Santos HG, Souza T da S (2022) Eucalyptus breeding programs: a proposal for the use of inbred progênies. CERNE 28:e103049. https://doi.org/10.1590/01047760202228013049 Search in Google Scholar

Rezende GDSP, Lima JL, Dias D da C, et al (2019) Clonal composites: An alternative to improve the sustainability of production in eucalypt forests. For Ecol Manage 449:117445. https://doi.org/10.1016/J.FORECO.2019.06.042 Search in Google Scholar

Rezende GSDP, Deon de Resende M V, de Assis G D S P Rezende TF, et al (2014) Eucalyptus Breeding for Clonal Forestry. 393–424. https://doi.org/10.1007/978-94-007-7076-8_16 Search in Google Scholar

Ruotsalainen S (2014) Increased forest production through forest tree breeding. Scand J For Res 29:333–344. https://doi.org/10.1080/02827581.2014.926100 Search in Google Scholar

Santos AP dos, Nunes ACP, Corrêa RX, et al (2024a) Genetic diversity and selection gains in progeny tests of tropical forest species: a two-way road for the future. New For 55:997–1020. https://doi.org/10.1007/S11056-023-10015-9/FIGURES/3 Search in Google Scholar

Santos HG, Lima JL de, Marçal T de S, et al (2024b) Would it be possible to reduce the number of repetitions in the evaluation of clones in a single tree plot? Euphytica 220:1–9. https://doi.org/10.1007/S10681-024-03294-6/FIGURES/1 Search in Google Scholar

Shelbourne CJA (2019) Experiment Design in Provenance and Progeny Trials. Tree Breed Genet New Zeal 53–54. https://doi.org/10.1007/978-3-030-18460-5_7 Search in Google Scholar

Silva PHM da, Rocha GN da, Araujo M, et al (2024) Thinning Strategies to Optimize Genetic Gain and Population Size in Eucalyptus pellita Breeding. Tree Genet Genomes 2024 206 20:1–7. https://doi.org/10.1007/S11295-024-01674-6 Search in Google Scholar

Skrøppa T, Solvin TM, Steffenrem A (2023) Diallel crosses in Picea abies III. Variation and inheritance patterns in nursery trials. Silvae Genet 72:49–57. https://doi.org/10.2478/SG-2023-0005 Search in Google Scholar

Souza EFM De, Peternelli LA, Pereira Barbosa MH (2006) Designs and model effects definitions in the initial stage of a plant breeding program. Pesqui Agropecuária Bras 41:369–375. https://doi.org/10.1590/S0100-204X2006000300001 Search in Google Scholar

Stanger TK, Galloway GM, Retief ECL (2011) Final results from a trial to test the effect of plot size on Eucalyptus hybrid clonal ranking in coastal Zululand, South Africa. South For a J For Sci 73:131–135. https://doi.org/10.2989/20702620.2011.639492 Search in Google Scholar

Tambarussi E V., Silva EDB, da Costa RML, et al (2023) Growth and survival of Eucalyptus viminalis in a frost-prone site in southern Brazil, and implications for genetic management. New Zeal J For Sci 53:. https://doi.org/10.33494/NZJFS532023X236X Search in Google Scholar

Utz HF, Melchinger AE, Schön CC (2000) Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples. Genetics 154:1839–1849. https://doi.org/10.1093/GENETICS/154.4.1839 Search in Google Scholar

Varghese M, Harwood CE, Hegde R, Ravi N (2008) Evaluation of provenances of Eucalyptus camaldulensis and clones of E. camaldulensis and E. tereticornis at contrasting sites in southern India. Silvae Genet 57:170–179. https://doi.org/10.1515/SG-2008-0026 Search in Google Scholar

Vencovsky R, Crossa J (2003) Measurements of Representativeness Used in Genetic Resources Conservation and Plant Breeding. Crop Sci 43:1912–1921. https://doi.org/10.2135/CROPSCI2003.1912 Search in Google Scholar

Walsh B, Lynch M (2018) Evolution and selection of quantitative traits Search in Google Scholar

Weng Q, He X, Li F, et al (2014) Hybridizing ability and heterosis between Eucalyptus urophylla and E. tereticornis for growth and wood density over two environments. Silvae Genet 63:15–24. https://doi.org/10.1515/sg-2014-0003 Search in Google Scholar

Weng YH, Park YS, Krasowski MJ, et al (2008) Partitioning of genetic variance and selection efficiency for alternative vegetative deployment strategies for white spruce in Eastern Canada. Tree Genet Genomes 4:809–819. https://doi.org/10.1007/S11295-008-0154-0/TABLES/4 Search in Google Scholar

White TL, Hodge GR (1989) Concepts of Progeny Test Analysis. 48–61. https://doi.org/10.1007/978-94-015-7833-2_3 Search in Google Scholar

Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis Witcombe JR, Virk DS (2001) Number of crosses and population size for participatory and classical plant breeding. Euphytica 122:451–462. https://doi.org/10.1023/A:1017524122821/METRICS Search in Google Scholar

Zhang H, Zhang Y, Zhang D, et al (2020) Progeny performance and selection of superior trees within families in Larix olgensis. Euphytica 216:1–10. https://doi.org/10.1007/S10681-020-02596-9/TABLES/6 Search in Google Scholar

Ziegler AC da F, Tambarussi EV (2022) Classifying coefficients of genetic variation and heritability for Eucalyptus spp. Crop Breed Appl Biotechnol 22:e40372222. https://doi.org/10.1590/1984-70332022V22N2A12 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Ciencias de la vida, Biología molecular, Genética, Biotecnología, Botánica