[
Araujo MJ, Rocha GN, Estopa RA, Oberschelp J, Silva PHM (2023) Conservative or non-conservative strategy to advance breeding generation? A case study in using spatial variation and competition model. Silvae Genetica 72:1-10. http://dx.doi.org/10.2478/sg-2023-0001
]Search in Google Scholar
[
Araujo MJ, Paula RC, Moraes CB, Pieroni G, Silva PHM (2021) Thinning strategies for Eucalyptus dunnii population: balance between breeding and conservation using spatial variation and competition model. Tree Genetics and Genomes 17:42. https://doi.org/10.1007/s11295-021-01523-w
]Search in Google Scholar
[
Assis TF, Muro Abad JI, Aguiar AM (2015) Melhoramento genético do eucalipto. In: Schumacher MV, Vieira M. Silvicultura do eucalipto no Brasil. Santa Maria, Brazil: Editora UFSM. pp. 225-247.
]Search in Google Scholar
[
Assis TF, Mafia RG (2007) Hibridação e clonagem. In: Borém A (Ed.). Biotecnologia florestal. Viçosa, MG: Ed. UFV, p. 95-121.
]Search in Google Scholar
[
Barros IP, et. al. (2023) Genetic structure and diversity in wild and breeding populations of Eucalyptus urophylla. Silvae Genetica, 71:128-136. https://doi.org/10.2478/sg-2022-0015.
]Search in Google Scholar
[
Boland DJ, Brooker MIH, Chippendale GH, Hall N, Hyland BPM, Johnston RD, Kleinig DA, McDonald MW, Turner JD (2006) Forest trees of Australia. Collingwood: CSIRO publishing. https://doi.org/10.1071/9780643069701
]Search in Google Scholar
[
Brondani RPV, Williams ER, Brondani C, Grattapaglia D (2006) A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus. BMC Plant Biology 6:20. https://doi.org/10.1186/1471-2229-6-20
]Search in Google Scholar
[
Brondani RPV, Brondani C, Tarchini R, Grattapaglia D (1998) Development, characterization and mapping of microsatellites markers in Eucalyptus grandis and E. urophylla. Theoretical and Applied Genetics 97:816-827. https://doi.org/10.1007/s001220050961
]Search in Google Scholar
[
Bush D, Thumma B (2013) Characterising a Eucalyptus cladocalyx breeding population using SNP markers. Tree Genetics and Genomes 9:741-752. https://doi.org/10.1007/s11295-012-0589-1
]Search in Google Scholar
[
Campinhos E, Ikemori YK (1977) Tree improvement program of Eucalyptus spp.: preliminary results. In: Third World Consultation on forest tree breeding. CSIRO, Canberra - Australia, pp. 717-738.
]Search in Google Scholar
[
Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochemical Bulletin 19:11-15.
]Search in Google Scholar
[
Faria DA, Mamani EMC, Pappas GJ, Grattapaglia D (2011) Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests. Tree Genetics and Genomes 7:63-77. https://doi.org/10.1007/s11295-010-0315-9
]Search in Google Scholar
[
Faria DA, Mamani EMC, Pappas MR, Pappas GJ, Grattapaglia D (2010) A selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of Eucalyptus. Journal of Heredity 101:512-520. https://doi.org/10.1093/jhered/esq024
]Search in Google Scholar
[
Ferreira M, Santos PET (1997) Melhoramento genético florestal dos eucaliptos no Brasil - breve histórico e perspectivas. In: IUFRO Conference on Silviculture and Improvement of Eucalypts, 1997, Salvador. Anais. Colombo, PR: EMBRAPA 1, pp 14-34.
]Search in Google Scholar
[
Goldestein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463-471. https://doi.org/10.1093/genetics/139.1.463
]Search in Google Scholar
[
Goudet J, Jombart T (2020) hierfstat: estimation and tests of hierarchical F-statistics. R package version 0.5-7.
]Search in Google Scholar
[
Grattapaglia D, Kirst M (2008) Eucalyptus applied genomics: from gene sequences to breeding tools. New Phytologist 79:911-929. http://dx.doi.org/10.1111/j.1469-8137.2008.02503.x
]Search in Google Scholar
[
Grattapaglia D, Mamani E, Silva-Junior OB, Faria DA (2015) A novel genome- wide microsatellite resource for species of Eucalyptus with linkage-to-physical correspondence on the reference genome sequence. Molecular Ecology Resources 15:437-448. https://doi.org/10.1111/1755-0998.12317
]Search in Google Scholar
[
House SM (1997) Reproductive biology of eucalypts. In: Eucalyptecology: individuals to ecosystems. Edited by Williams JE, Woinarski JCZ. Cambridge University Press, Cambridge, UK. pp. 30-55.
]Search in Google Scholar
[
Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403-1405. https://doi.org/10.1093/bioinformatics/btn129
]Search in Google Scholar
[
Kirst M, Cordeiro CM, Rezende GDSP, Grattapaglia D (2005) Power of microsatellite markers for fingerprinting and parentage analysis in Eucalyptus grandis breeding populations. Journal of Heredity 96:161-166. https://doi.org/10.1093/jhered/esi023
]Search in Google Scholar
[
Li Y-L, Liu J-X (2018) StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18:176-177. https://doi.org/10.1111/1755-0998.12719
]Search in Google Scholar
[
Lu W, Arnould RJ, Zhang L, Luo J (2018) Genetic diversity and structure through three cycles of a Eucalyptus urophylla S.T. Blake breeding program. Forests 9:372. http://dx.doi.org/10.3390/f9070372
]Search in Google Scholar
[
Martin B, Quillet J (1974) Propagation by cuttings of forest trees in the Congo. Bois et Forets Tropiques 154:41-40.
]Search in Google Scholar
[
Miranda AC, Silva PHM, Moraes MLT, Lee DJ, Sebbenn AM (2019) Investigating the origin and genetic diversity of improved Eucalyptus grandis populations in Brazil. Forest Ecology and Management 448:130-138. https://doi.org/10.1016/j.foreco.2019.05.071
]Search in Google Scholar
[
Mora F, Arriagada O, Ballesta P, Ruiz E (2016) Genetic diversity and population structure of a drought-tolerant species of Eucalyptus, using microsatellite markers. Journal of Plant Biochemistry and Biotechnology 26:274-281. https://doi.org/10.1007/s13562-016-0389-z
]Search in Google Scholar
[
Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. Journal of Molecular Evolution 19:153-170. https://doi.org/10.1007/bf02300753
]Search in Google Scholar
[
Nevill PG, Reed A, Bossinger G, Vaillancourt RE, Larcombe M, Ades PK (2008) Cross-species amplification of Eucalyptus microsatellite loci. Molecular Ecology Resources 8:1277-1280. https://doi.org/10.1111/j.1755-0998.2008.02362.x
]Search in Google Scholar
[
Oliveira DA, Silva PHM, Novaes E, Grattapaglia D (2023) Genome-wide analysis highlights genetic admixture in exotic germplasm resources of Eucalyptus and unexpected ancestral genomic composition of interspecific hybrids. PLoS ONE 18:e0289536. https://doi.org/10.1371/journal.pone.0289536
]Search in Google Scholar
[
Oottwell KM, Donnellan SC, Moran GF, Paton DC (2005) Multiplexed microsatellite markers for the genetic analysis of Eucalyptus leucoxylon, Myrtaceae and their utility for ecological and breeding studies in other Eucalyptus species. Journal of Heredity 96:445-451. https://doi.org/10.1093/jhered/esi057
]Search in Google Scholar
[
Paludzyszyn Filho E, Santos ET (2011) Programa de melhoramento genético do eucalipto da Embrapa Florestas: resultados e perspectivas. Embrapa Florestas, Colombo–PR.
]Search in Google Scholar
[
Payn KG, Dvorak WS, Janse BJ, Myburg AA (2008) Microsatellite diversity and genetic structure of the commercially important tropical tree species Eucalyptus urophylla, endemic to seven islands in eastern Indonesia. Tree Genetics and Genomes 4:519-530. http://dx.doi.org/10.1007/s11295-007-0128-7
]Search in Google Scholar
[
Payn KG, Dvorak WS, Myburg AA (2007) Chloroplast DNA phylogeography reveals the island colonization route of Eucalyptus urophylla (Myrtaceae). Australian Journal of Botany 55:1277-1280. https://doi.org/10.1071/BT07056
]Search in Google Scholar
[
Prichard J,K, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945-959. https://doi.org/10.1093/genetics/155.2.945
]Search in Google Scholar
[
Puechmaille SJ (2016) The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16:608-627. https://doi.org/10.1111/1755-0998.12512
]Search in Google Scholar
[
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
]Search in Google Scholar
[
Salgotra RK, Chauhan BS (2023) Genetic diversity, conservation, and utilization of plant genetic resources. Genes 14:174. https://doi.org/10.3390%2Fgenes14010174
]Search in Google Scholar
[
Scanavaca Júnior L, Garcia JN (2021) Eucalyptus Subgenus Symphyomyrtus: Sections: Exsertaria, Latoangulatae. Scientia Agricola 78:1-14. http://dx.doi.org/10.1590/1678-992x-2020-0173
]Search in Google Scholar
[
Schumacher MV, Vieira M (2015) Silvicultura do Eucalipto no Brasil. Editora UFSM, Santa Maria-RS.
]Search in Google Scholar
[
Silva PHM, Brune A, Pupin S, Moraes MLT, Sebbenn AM, Paulo RC (2018) Maintenance of genetic diversity in Eucalyptus urophylla S.T. Blake populations with restriction of the number of trees per family. Silvae Genetica 67:34-40. http://dx.doi.org/10.2478/sg-2018-0005
]Search in Google Scholar
[
Silva PHM, Brune A, Alvares CA, Amaral W, Moraes MLT, Grattapaglia D, Paulo RC (2019a) Selecting for stable and productive families of Eucalyptus urophylla across a country-wide range of climates in Brazil. Canadian Journal of Forest Research 49:87-95. https://doi.org/10.1139/cjfr-2018-0052
]Search in Google Scholar
[
Silva PHM, Marco M, Alvares CA, Lee D, Moraes MLT, Paulo RC (2019b) Selection of Eucalyptus grandis families across contrasting environmental conditions. Crop Breeding and Applied Biotechnology 19:47-54. https://doi.org/10.1590/1984-70332019v19n1a07
]Search in Google Scholar
[
Silva PHM, Abrahão OS (2020) Gene flow and spontaneous seedling establishment around genetically modified eucalypt plantations. New Forests 52:349-361. https://doi.org/10.1007/s11056-020-09800-7
]Search in Google Scholar
[
Silva LD, Higa AR, Freire LV, Leite HPP, Bastos FG, Batista JLF, Victoria DC (2021) Diagnóstico de plantações florestais no cerrado brasileiro. In: Silva LD, Higa AR, Victoria DC. Sistema de informações para planejamento florestal no cerrado brasileiro. pp. 53-95, Piracicaba, ESALQ/USP. SIFLOR - Cerrado - V.I https://doi.org/10.11606/9786587391076
]Search in Google Scholar
[
Tripiana V, Bourgeois M, Verhaegen D, Vignero P, Bouvet J-M (2007) Combining microsatellites, growth, and adaptive traits for managing in situ genetic resources of Eucalyptus urophylla. Canadian Journal of Forest Research 37:773-785. https://doi.org/10.1139/X06-260
]Search in Google Scholar
[
Wright S (1949) The genetical structure of populations. Annals of Eugenics 15:323-354. http://dx.doi.org/10.1111/j.1469-1809.1949.tb02451.x
]Search in Google Scholar
[
Zanella CM, Turchetto-Zolet AC, Turchetto C, Passaia G (2017) Marcadores moleculares na era genômica: metodologias e aplicações. Sociedade Brasileira de Genética.
]Search in Google Scholar