Acceso abierto

Characterization of Cinnamyl Alcohol Dehydrogenase gene family in lignifying tissues of Tectona grandis L.f.


Cite

Alcântara BK, Veasey EA (2013) Genetic diversity of teak ( Tectona grandis L. f.) from different provenances using microsatellite markers. Rev Árvore 37:747-758. https://doi.org/10.1590/s0100-67622013000400018 10.1590/s0100-67622013000400018Open DOISearch in Google Scholar

Anterola AM, Lewis NG (2002) Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity. Phytochemistry 61:221-294. https://doi.org/10.1016/s0031-9422(02)00211-x 10.1016/s0031-9422(02)00211-xOpen DOISearch in Google Scholar

Baillères H, Durand PY (2000) Non-destructive techniques for wood quality as­sessment of plantation grown teak. Bois Forêts dês Trop 263:17-29. Search in Google Scholar

Barakat A, Bagniewska-Zadworna A, Choi A, et al (2009) The cinnamyl alcohol dehydrogenase gene family in Populus: phylogeny, organization, and ex­pression. BMC Plant Biol 9:26. https://doi.org/10.1186/1471-2229-9-26 10.1186/1471-2229-9-26266285919267902Open DOISearch in Google Scholar

Barakat A, Bagniewska-zadworna A, Frost CJ, Carlson JE (2010) Phylogeny and expression profiling of CAD and CAD-like genes in hybrid Populus (P. deltoi­des × P. nigra): evidence from herbivore damage for subfunctionalization and functional divergence. BMC Plant Biol 10:100. https://doi.org/10.1186/1471-2229-10-100 10.1186/1471-2229-10-100288745520509918Search in Google Scholar

Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: Genetic Engineer­ing and Impact on Pulping. Crit Rev Biochem Mol Biol 38:305-350. https://doi.org/10.1080/10409230391036757 10.1080/1040923039103675714551235Open DOISearch in Google Scholar

Bhat KM, Priya PB, Rugmini P (2001) Characterisation of juvenile wood in teak. Wood Sci Technol 34:517-532. https://doi.org/10.1007/s002260000067 10.1007/s002260000067Open DOISearch in Google Scholar

Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337-63. https://doi.org/10.1146/annurev-genet-102209-163508 10.1146/annurev-genet-102209-16350820809799Open DOISearch in Google Scholar

Bouvier d’Yvoire M, Bouchabke-Coussa O, Voorend W, et al (2013) Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignifi­cation and improved saccharification in Brachypodium distachyon. Plant J 73:496-508. https://doi.org/10.1111/tpj.12053 10.1111/tpj.1205323078216Open DOISearch in Google Scholar

Bukh C, Nord-Larsen PH, Rasmussen SK (2012) Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon. J Exp Bot 63:6223-6236. https://doi.org/10.1093/jxb/ers275 10.1093/jxb/ers275348121323028019Open DOISearch in Google Scholar

Cheng H, Li L, Xu F, et al (2013) Expression patterns of a cinnamyl alcohol dehy­drogenase gene involved in lignin biosynthesis and environmental stress in Ginkgo biloba. Mol Biol Rep 40:707-21. https://doi.org/10.1007/s11033-012-2111-0 10.1007/s11033-012-2111-023143181Open DOISearch in Google Scholar

Deepak MS, Sinha SK, Rao R V (2010) Tree-ring analysis of teak ( Tectona grandis L . f .) from Western Ghats of India as a tool to determine drought years. Emirates J Food Agric 22:388-397. https://doi.org/10.9755/ejfa.v22i5.4826 10.9755/ejfa.v22i5.4826Open DOISearch in Google Scholar

Deflorio G, Horgan G, Woodward S, Fossdal CG (2011) Gene expression profiles, phenolics and lignin of Sitka spruce bark and sapwood before and after wounding and inoculation with Heterobasidion annosum. Physiol Mol Plant Pathol 75:180-187. https://doi.org/10.1016/j.pmpp.2011.02.002 10.1016/j.pmpp.2011.02.002Open DOISearch in Google Scholar

Deng W-W, Zhang M, Wu J-Q, et al (2013) Molecular cloning, functional analysis of three cinnamyl alcohol dehydrogenase (CAD) genes in the leaves of tea plant, Camellia sinensis. J Plant Physiol 170:272-82. https://doi.org/10.1016/j.jplph.2012.10.010 10.1016/j.jplph.2012.10.01023228629Open DOISearch in Google Scholar

Eudes A, Liang Y, Mitra P, Loque D (2014) Lignin bioengineering. Curr Opin Bio­technol 26:189-198. https://doi.org/10.1016/j.copbio.2014.01.002 10.1016/j.copbio.2014.01.00224607805Open DOISearch in Google Scholar

Galeano E, Vasconcelos TS, Ramiro DA, et al (2014) Identification and validation of quantitative real-time reverse transcription PCR reference genes for gene expression analysis in teak (Tectona grandis L.f.). BMC Res Notes 7:464. https://doi.org/10.1186/1756-0500-7-464 10.1186/1756-0500-7-464411409325048176Open DOISearch in Google Scholar

Galeano E, Vasconcelos TS, Vidal M, et al (2015) Large-scale transcriptional profil­ing of lignified tissues in Tectona grandis. BMC Plant Biol 15:221. https://doi.org/10.1186/s12870-015-0599-x 10.1186/s12870-015-0599-x457022826369560Open DOISearch in Google Scholar

Guo D-M, Ran J-H, Wang X-Q (2010) Evolution of the Cinnamyl/Sinapyl Alcohol Dehydrogenase (CAD/SAD) gene family: the emergence of real lignin is as­sociated with the origin of Bona Fide CAD. J Mol Evol 71:202-18. https://doi.org/10.1007/s00239-010-9378-3 10.1007/s00239-010-9378-320721545Open DOISearch in Google Scholar

Jain A, Ansari S a. (2013) Quantification by allometric equations of carbon se­questered by Tectona grandis in different agroforestry systems. J For Res 24:699-702. https://doi.org/10.1007/s11676-013-0406-1 10.1007/s11676-013-0406-1Open DOISearch in Google Scholar

Jin Y, Zhang C, Liu W, et al (2014) The cinnamyl alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns. PLoS One 9:e101730. https://doi.org/10.1371/journal.pone.0101730 10.1371/journal.pone.0101730409651025019207Search in Google Scholar

Kim S-J, Kim M-R, Bedgar DL, et al (2004) Functional reclassification of the putative cinnamyl alcohol dehydrogenase multigene family in Arabidopsis. Proc Natl Acad Sci U S A 101:1455-60. https://doi.org/10.1073/pnas.0307987100 10.1073/pnas.030798710034174114745009Open DOISearch in Google Scholar

Kollert W, Cherubini L (2012) Teak resources and market assessment 2010 (Tec­tona grandis Linn. F.). Rome Search in Google Scholar

Larroy C, Fernandez MR, Gonzalez E, et al (2002) Characterization of the Saccha­romyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase : relevance in aldehyde reduction. Biochem J 361:163-172. https://doi.org/10.1042/bj3610163 10.1042/bj3610163Open DOISearch in Google Scholar

Laurichesse S, Avérous L (2014) Progress in Polymer Science Chemical modification of lignins : Towards biobased polymers. Prog Polym Sci 39:1266-1290. https://doi.org/10.1016/j.progpolymsci.2013.11.004 10.1016/j.progpolymsci.2013.11.004Open DOISearch in Google Scholar

Li L, Lu S, Chiang V (2006) A Genomic and Molecular View of Wood Formation. CRC Crit Rev Plant Sci 25:215-233. https://doi.org/10.1080/07352680600611519 10.1080/07352680600611519Open DOISearch in Google Scholar

Li X, Yang Y, Yao J, et al (2009) FLEXIBLE CULM 1 encoding a cinnamyl-alcohol dehydrogenase controls culm mechanical strength in rice. Plant Mol Biol 69:685-97. https://doi.org/10.1007/s11103-008-9448-8 10.1007/s11103-008-9448-8Open DOISearch in Google Scholar

Lukmandaru G, Takahashi K (2008) Variation in the natural termite resistance of teak (Tectona grandis Linn. fil.) wood as a function of tree age. Ann For Sci 65:708. https://doi.org/10.1051/forest:2008047 10.1051/forest:2008047Open DOISearch in Google Scholar

Lynch D, Lidgett A, Mcinnes R, et al (2002) Isolation and characterisation of three cinnamyl alcohol dehydrogenase homologue cDNAs from perennial rye­grass ( Lolium perenne L .). J Plant Physiol 159:653-660. https://doi.org/10.1078/0176-1617-0776 10.1078/0176-1617-0776Open DOISearch in Google Scholar

Mansell RL, Gross GG, Stöckigt J, et al (1974) Purification and properties of cin­namyl alcohol dehydrogenase from higher plants involved in lignin biosyn­thesis. Phytochemistry 13:2427-2435. https://doi.org/10.1016/s0031-9422(00)86917-4 10.1016/s0031-9422(00)86917-4Open DOISearch in Google Scholar

Pilate G, Guiney E, Holt K, et al (2002) Field and pulping performances of trans­genic trees with altered lignification. Nat Biotechnol 20:607-612. https://doi.org/10.1038/nbt0602-607 10.1038/nbt0602-60712042866Open DOISearch in Google Scholar

Preisner M, Kulma A, Zebrowski J, et al (2014) Manipulating cinnamyl alcohol dehydrogenase (CAD) expression in flax affects fibre composition and prop­erties. BMC Plant Biol 14:50. https://doi.org/10.1186/1471-2229-14-50 10.1186/1471-2229-14-50394506324552628Open DOISearch in Google Scholar

Salzman RA, Fujita T, Hasegawa PM (1999) An Improved RNA Isolation Method for Plant Tissues Containing High Levels of Phenolic Compounds or Carbo­hydrates. Plant Mol Biol Report 17:11-17. 10.1023/A:1007520314478Search in Google Scholar

Sattler SE, Saathoff AJ, Haas EJ, et al (2009) A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown mid­rib6 phenotype. Plant Physiol 150:584-95. https://doi.org/10.1104/pp.109.136408 10.1104/pp.109.136408268995019363091Open DOISearch in Google Scholar

Shi R, Sun Y-H, Li Q, et al (2010) Towards a systems approach for lignin biosyn­thesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant Cell Physiol 51:144-63. https://doi.org/10.1093/pcp/pcp175 10.1093/pcp/pcp17519996151Open DOISearch in Google Scholar

Shukla SR, Viswanath S (2014) Comparative study on growth, wood quality and financial returns of teak (Tectona grandis L.f.) managed under three different agroforestry practices. Agrofor Syst 88:331-341. https://doi.org/10.1007/s10457-014-9686-5 10.1007/s10457-014-9686-5Open DOISearch in Google Scholar

Tang R, Zhang X-Q, Li Y-H, Xie X-M (2014a) Cloning and in silico analysis of a cin­namyl alcohol dehydrogenase gene in Pennisetum purpureum. J Genet 93:145-158. https://doi.org/10.1007/s12041-014-0355-2 10.1007/s12041-014-0355-224840831Open DOISearch in Google Scholar

Tang X, Xiao Y, Lv T, et al (2014b) High-Throughput Sequencing and De Novo As­sembly of the Isatis indigotica Transcriptome. PLoS One 9:e102963. https://doi.org/10.1371/journal.pone.0102963 10.1371/journal.pone.0102963417801325259890Search in Google Scholar

Tobias CM, Chow EK (2005) Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lig­nification. Planta 220:678-88. https://doi.org/10.1007/s00425-004-1385-4 10.1007/s00425-004-1385-415452707Open DOISearch in Google Scholar

Trabucco GM, Matos D a, Lee SJ, et al (2013) Functional characterization of cin­namyl alcohol dehydrogenase and caffeic acid O-methyltransferase in Brachypodium distachyon. BMC Biotechnol 13:61. https://doi.org/10.1186/1472-6750-13-61 10.1186/1472-6750-13-61373421423902793Open DOISearch in Google Scholar

Tronchet M, Balagué C, Kroj T, et al (2010) Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol Plant Pathol 11:83-92. https://doi.org/10.1111/j.1364-3703.2009.00578.x10.1111/j.1364-3703.2009.00578.x664023920078778Open DOISearch in Google Scholar

Valério L, Carter D, Rodrigues JC, et al (2003) Down regulation of Cinnamyl Alcohol Dehydrogenase , a lignification enzyme , in Eucalyptus camaldulensis. Mol Breed 12:157-167. Vanholme R, Demedts B, Morreel K, et al (2010) Lignin biosynthesis and struc­ture. Plant Physiol 153:895-905. https://doi.org/10.1104/pp.110.155119 10.1104/pp.110.155119289993820472751Open DOISearch in Google Scholar

Xu Y, Thammannagowda S, Thomas TP, et al (2013) LtuCAD1 Is a Cinnamyl Alcohol Dehydrogenase Ortholog Involved in Lignin Biosynthesis in Lirioden­dron tulipifera L., a Basal Angiosperm Timber Species. Plant Mol Biol Report 31:1089-1099. https://doi.org/10.1007/s11105-013-0578-z 10.1007/s11105-013-0578-zOpen DOISearch in Google Scholar

Youn B, Camacho R, Moinuddin SG a, et al (2006) Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4. Org Biomol Chem 4:1687-97. https://doi.org/10.1039/b601672c 10.1039/b601672c16633561Open DOISearch in Google Scholar

Zeng Y, Zhao S, Yang S, Ding S (2014) Lignin plays a negative role in the bio­chemical process for producing lignocellulosic biofuels. Curr Opin Biotech­nol 27:38-45. https://doi.org/10.1016/j.copbio.2013.09.008 10.1016/j.copbio.2013.09.00824863895Open DOISearch in Google Scholar

Zhang L, Wang G, Chang J, et al (2010) Effects of 1-MCP and ethylene on expression of three CAD genes and lignification in stems of harvested Tsai Tai (Brassica chinensis). Food Chem 123:32-40. https://doi.org/10.1016/j.foodchem.2010.03.12210.1016/j.foodchem.2010.03.122Open DOISearch in Google Scholar

eISSN:
2509-8934
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Life Sciences, Molecular Biology, Genetics, Biotechnology, Plant Science