Cite

[1] Motrunich, S., Poklatsky, A., Klochkov, I., Rogante, M., Zavdoveev, A. “Basic advantages of thin-sheet AA5056 alloy joints produced by friction stir welding”, Proc. of the 10th International Conference on Mechanical Technologies and Structural Materials, MTSM 2021, Split, Croatia, 2021 (70), pp. 119 – 124, 2021. ISSN 18477917Search in Google Scholar

[2] Vorob’ev, E. V., Strizhalo, V. A., Anpilogova, T. V. “Strain-hardening of notched steel specimens during their deep cooling down to 4.2 K”, Strength of Materials 49 (5), pp. 613 – 617, 2017. DOI: 10.1007/s11223-017-9906-0Search in Google Scholar

[3] Lukinenko, A. O., Motrunich, S. I., Bajic, D., Kuleshov, V. A., Pokliatskyi, A. G., Labur, T. M. “Noise level assessment and mechanical properties of welded joints of aluminium alloys of the Al-Cu-Li system in FSW and TIG welding”, FME Transactions 49 (1), pp. 220 – 224, 2020. DOI: 10.5937/FME2101220LSearch in Google Scholar

[4] Wan, Z., Meng, D., Zhao, Y., Zhang, D., Wang, Q., Shan, J., Song, J., Wang, G., Wu, A. “Improvement on the tensile properties of 2219-T8 aluminum alloy TIG welding joint with weld geometry optimization”, Journal of Manufacturing Processes 67, pp. 275 – 285, 2021. DOI: 10.1016/j.jmapro.2021.04.062Search in Google Scholar

[5] Wang, G., Li, Q., Li, J., Wu, A., Ma, N., Yan, D., Wu, H. “Effects of weld reinforcement on tensile behavior and mechanical properties of 2219-T87 aluminum alloy TIG welded joints”, Transactions of Nonferrous Metals Society of China 27 (1), pp. 10 – 16, 2017. DOI: 10.1016/S1003-6326(17)60002-5Search in Google Scholar

[6] Ma, M., Lai, R., Qin, J., Wang, B., Liu, H., Yi, D. “Effect of weld reinforcement on tensile and fatigue properties of 5083 aluminum metal inert gas (MIG) welded joint: Experiments and numerical simulations”, International Journal of Fatigue 144, Article number 106046, 2021. DOI: 10.1016/j.ijfatigue.2020.106046Search in Google Scholar

[7] Goyal, R., El-Zein, M., Glinka, G. “A robust stress analysis method for fatigue life prediction of welded structures”, Welding in the World 60 (2), pp. 299 – 314, 2016. DOI: 10.1007/s40194-016-0295-ySearch in Google Scholar

[8] Lee, J., Seo, J., Kim, M., Shin, S., Han, M., Park, J., Mahendran, M. “Comparison of hot spot stress evaluation methods for welded structures”, International Journal of Naval Architecture and Ocean Engineering 2 (4), pp. 200 – 210, 2010. DOI: 10.3744/JNAOE.2010.2.4.200Search in Google Scholar

[9] Doerk, O., Fricke, W., Weissenborn, C. “Comparison of different calculation methods for structural stresses at welded joints”, International Journal of Fatigue 25 (5), pp. 359 – 369, 2003. DOI: 10.1016/S0142-1123(02)00167-6Search in Google Scholar

[10] Fricke, W., Kahl, A. “Comparison of different structural stress approaches for fatigue assessment of welded ship structures”, Marine Structures 18 (7-8), pp. 473 – 488, 2005. DOI: 10.1016/j.marstruc.2006.02.001Search in Google Scholar

[11] Sejč, P., Világoš, T. “Fem Simulation of Thermal Cycles During Laser Welding of Aluminium" Strojnícky časopis – Journal of Mechanical Engineering 68 (1), pp. 89 – 94, 2018. DOI: 10.2478/scjme-2018-0009Search in Google Scholar

[12] Goyal, R., El-Zein, M., Glinka, G. “Computational weld analysis and fatigue of welded structures”, In: da Silva, L. F. V., El-Zein, M., Martins, P. A. F. (eds) Advanced joining processes. Welding, plastic deformation, and adhesion. Elsevier Inc., Amsterdam, Oxford, Cambridge, First edition, 2021. DOI: 10.1016/C2019-0-01447-1Search in Google Scholar

[13] Tsumarev, Yu. A. “Effect of off-centre tensile loading on the stress state of butt-welded joints”, Welding International 25 (11), pp. 872 – 875, 2011. DOI: 10.1080/09507116.2011.581426Search in Google Scholar

[14] Moltasov, A. V. “Stressed state of a butt-welded joint with regard for displacements of the centers of inertia”, Materials Science 55 (3), pp. 358 – 366, 2019. DOI: 10.1007/s11003-019-00310-2Search in Google Scholar

[15] Motrunich, S., Klochkov, I., Poklaytsky, A. “High cycle fatigue behaviour of thin sheet joints of aluminium-lithium alloys under constant and variable amplitude loading”, Welding in the World 64 (12), pp. 1971 – 1979, 2020. DOI: 10.1007/s40194-020-00976-2Search in Google Scholar

[16] Élesztős P., Jančo R., Voštiar V. “Optimization of Welding Process using a Genetic Algorithm”, Strojnícky časopis – Journal of Mechanical Engineering 68 (2), pp.17 – 24, 2018. DOI: 10.2478/scjme-2018-0014Search in Google Scholar

[17] Moltasov, A., Tkach, P., Ustynenko, O., Protasov, R. “Effect of load eccentricity on stress condition of butt welded joint with asymmetrical reinforcement”, Strojnícky časopis – Journal of Mechanical Engineering 72 (1), pp. 99 – 108, 2022. DOI: 10.2478/scjme-2022-0010Search in Google Scholar

[18] Mashin, V. S., Pashulya, M. P., Shonin, V. A., Klochkov, I. N. “Consumable electrode pulsed argon-arc welding of sheet aluminium alloys”, The Paton Welding Journal, 5, pp. 38 – 41, 2010. ISSN 0957-798XSearch in Google Scholar

[19] Molski, K. L., Tarasiuk, P. “Stress concentration factors for butt-welded plates subjected to tensile, bending and shearing loads”, Materials 13 (8), Article number 1798, 2020. DOI: 10.3390/MA13081798Search in Google Scholar

[20] Moltasov, A. V. “A study of the stress state in stress concentration zones under tension of an asymmetrically reinforced butt-welded joint”, Strength of Materials 49(5), pp. 718 – 725, 2017. DOI: 10.1007/s11223-017-9917-xSearch in Google Scholar

eISSN:
2450-5471
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics