Acceso abierto

Improving the Efficiency of Grinding Process Using the Rubber-Pasted Grinding Wheel


Cite

[1] Ewald, K., Carsten, H., Marcos E. “Evaluation of Hardness and Residual Stress Changes of AISI 4140 Steel Due to Thermal Load during Surface Grinding”, Journal of Manufacturing and Materials processing 5v(73), pp. 1 – 20, 2021. DOI: 10.3390/jmmp503007310.3390/jmmp5030073 Search in Google Scholar

[2] Marinescu, I. D., Hitchiner, M. P., Uhlman, E., Rowe, W. B., Inasai, I. “Handbook of Machining with Grinding Wheels”, CRC Press, 2006.10.1201/9781420017649 Search in Google Scholar

[3] Malkin, S., Guo, C. “Grinding technology: Theory and Applications of Machining with Abrasives – Second edition”, Industrial press, New York, 2008. Search in Google Scholar

[4] Sujit, M., Ahin, B., Santanu, D., Samik, C. “Experimental investigation and modelling on air layer formation around a rotating grinding wheel”, Cogent Engineering 3(1), pp. 1 – 18, 2016. DOI: 10.1080/23311916.2016.118327310.1080/23311916.2016.1183273 Search in Google Scholar

[5] Mandal, B., Majumdar, S., Das, S., Banerjee, S. “Formation of a significantly less stiff air-layer around a grinding wheel pasted with rexine leather”, International Journal of Precision Technology 2(1), pp. 12 – 20, 2011. DOI: 10.1504/IJPTECH.2011.03810610.1504/IJPTECH.2011.038106 Search in Google Scholar

[6] Dung, H. T., Trung, D. D., Thien, N. V., Ky, L. H., Sonpheth, K. “Influence of Lubricant Parameters on Surface Roughness of Workpiece When Grinding SKD11 Steel”, International Conference on Engineering Research and Applications 104, pp. 436 – 447, 2019. DOI: 10.1007/978-3-030-37497-6_5010.1007/978-3-030-37497-6_50 Search in Google Scholar

[7] Kananathan, J., Samykano, M., Sudhakar, K., Subramanim, S. R., Selavamani, S. K., Kumar, N. M., Keng, N. W., Kadirgama, K., Hamzah, W. A. M., Harung, W. S. W. “Nanofluid as coolant for grinding process: An overview”, IOP Conf. Series: Materials Science and Engineering 342 (012078), pp. 1 – 16, 2018. DOI: 10.1088/1757-899X/342/1/01207810.1088/1757-899X/342/1/012078 Search in Google Scholar

[8] Adibi, H., Esmaeili, H., Rezaei, S. M. “Study on minimum quantity lubrication (MQL) in grinding of carbon fiber-reinforced SiC matrix composites (CMCs)”, The International Journal of Advanced Manufacturing Technology 95, pp. 3753 – 3767, 2018. DOI: 10.1007/s00170-017-1464-x10.1007/s00170-017-1464-x Search in Google Scholar

[9] Sinha M. K., Madarkar R., Shosh R., paruchuri, V. R. “Some investigations in grindability improvement of Inconel 718 under ecological grinding”, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 233 (3), pp. 727 – 744, 2018. DOI: 10.1177/095440541775251310.1177/0954405417752513 Search in Google Scholar

[10] Soepangkat, B. O. P., Pramujati, B., Dubiyanto, H. Sampurno, “Assessments of forces, surface roughness and chip formation in surface grinding of SKD 61 tool steels using dry and minimum quantity lubrication(MQL) techniques”, AIP Conference Proceedings 1983 (040008), pp. 1 – 7, 2018. DOI: 10.1063/1.504626510.1063/1.5046265 Search in Google Scholar

[11] Trung, D. D., Thien, N. V., Nguyen, N. T. “Application of TOPSIS Method in Multi-Objective Optimization of the Grinding Process Using Segmented Grinding Wheel”, Tribology in Industry 43 (1), pp. 12 – 22, 2021. DOI:10.24874/ti.998.11.20.1210.24874/ti.998.11.20.12 Search in Google Scholar

[12] Jin, D. X., Meng, Z. “Research for discontinuous grinding wheel with multi- porous grooves”, Key Engineering Materials 259 – 260, pp. 117 – 121, 2004. DOI: 10.4028/www.scientific.net/KEM.259-260.11710.4028/www.scientific.net/KEM.259-260.117 Search in Google Scholar

[13] Fan, X., Miller, M. “Force Analysis for Segmental Grinding”, Machining Science and Technology 10 (4), pp. 3 – 6, 2006. DOI: 10.1080/1091034060099614210.1080/10910340600996142 Search in Google Scholar

[14] Handigund, P. B., Miller, M. H. “Abrasive Wear and Forces in Grinding of Silicon Carbide”, Michigan Technological University, Houghton, MI, 2001. Search in Google Scholar

[15] Nguyen, N. T., Trung, D. D. “A study on the surface grinding process of the SUJ2 steel using CBN slotted grinding wheel”, AIMS Materials Science 7 (6), pp. 871 – 886, 2020. DOI: 10.3934/matersci.2020.6.87110.3934/matersci.2020.6.871 Search in Google Scholar

[16] Lee, K. W., Wong, P. K., Zhang, J. H. “Study on the grinding of advanced ceramics with slotted diamond wheels”, Journal of Materials Processing Technology 100 (1-3), pp. 230 – 235, 2000. DOI: 10.1016/S0924-0136(00)00403-910.1016/S0924-0136(00)00403-9 Search in Google Scholar

[17] Wojciech K., Krzysztof N., Marzena S., Mozammel M., Danil Y. P., Munish K. G. “Experimental Studies on MoS2-Treated Grinding Wheel Active Surface Condition after High-Efficiency Internal Cylindrical Grinding Process of INCONEL ® Alloy 718”, Micromachines 10 (255), pp. 1 – 19, 2019. DOI: 10.3390/mi1004025510.3390/mi10040255652327930999662 Search in Google Scholar

[18] Woiciech, K., Krzysztof, N., Krzysztof, R., Jocelyne, M., Mozammel, M., Danil, Y. P., Olga, K., Munish, K. G. “Internal Cylindrical Grinding Process of INCONEL® Alloy 600 Using Grinding Wheels with Sol–Gel Alumina and a Synthetic Organosilicon Polymer-Based Impregnate”, Micromachines 11(2), pp. 1 - 19, 2020. DOI: 10.3390/mi1102011510.3390/mi11020115707493731973056 Search in Google Scholar

[19] Spandang, G., Partha, P. D., Shankar, C. “Improvement in the performance with less stiff air layer formation around the rubber tube-pasted grinding wheel”, Journal of Mechanical Engineering Science 0 (0), pp. 1 – 15, 2020. DOI: 10.1177/095440621984453410.1177/0954406219844534 Search in Google Scholar

[20] Henizel, C., Borchers, F., Berger, D., Ehle, L. “Surface and material modifications of tempered steel after precision grinding with electroplated coarse grained diamond wheels”, Procedia CIRP 45, pp. 191 – 194, 2016. DOI: 10.1016/j.procir.2016.02.32910.1016/j.procir.2016.02.329 Search in Google Scholar

[21] Adghi, S. M. H., Hadas, M. L., Tawakoli, T., Vesali, A., Emami, M. “An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique”, International Journal of Material Forming 3, pp. 241 – 251, 2010. DOI: 10.1007/s12289-009-0678-310.1007/s12289-009-0678-3 Search in Google Scholar

[22] Taranvir, S., Pariad, K., Khushdeep, G. “Optimization of Process Parameters for Minimum Outof-Roundness of Cylindrical Grinding of Heat Treated AISI 4140 Steel”, American Journal of Mechanical Engineering 2 (2), pp. 34 – 40, 2014. DOI: 10.12691/ajme-2-2-110.12691/ajme-2-2-1 Search in Google Scholar

[23] Komson, J., Sittichai, K., Peeranut, K. “The Study of Influenced Factors Affecting to Quality of Cylindrical Grinding Harden AISI 4140 Steel”, 2nd International Confrence on Mechanical and Electronics Engineering 2, pp. 1 – 6, 2010. DOI: 10.1109/ICMEE.2010.555841310.1109/ICMEE.2010.5558413 Search in Google Scholar

[24] Tien, D. H., Trung, D. D., Thien, N. V., Nguyen, N. T. “Multi-Objective Optimization of the Cylindrical Grinding Process of SCM440 Steel Using Preference Selection Index Method”, Journal of Machine Engineering 21 (3), pp. 110 – 123, 2021. DOI: 10.36897/jme/14160710.36897/jme/141607 Search in Google Scholar

[25] Bhosetty, B., Gurram, V. K., Kumba, A. B. “Effect of minimum quantity lubrication on surface roughness and temperature in milling of EN31 steel for die making”, Strojnícky časopis – Journal of Mechanical Engineering 69(1), pp. 61 – 68, 2019. DOI: 10.2478/scjme-2019-000510.2478/scjme-2019-0005 Search in Google Scholar

[26] Trung, D. D., Nguyen, N. T., Duc, D. V. “Study on Multi-Objective Optimization of the Turning Process of EN 10503 Steel by Combination of Taguchi Method and Moora Technique”, EUREKA: Physics and Engineering 2, pp. 52 – 65, 2021. DOI: 10.21303/2461-4262.2020.00141410.21303/2461-4262.2020.001414 Search in Google Scholar

[27] Manoj, M., Gopal, A., Swati, D. C., Umesh, B., Veerendra, P. “Effect of Machine Feed Rate on Kerf-Width, Material Removal Rate, and Surface Roughness in Machining of Al/SiC Composite Material with Wire Electrical Discharge Machine”, Strojnícky časopis – Journal of mechanical engineering 70 (1), pp. 81 – 88, 2020. DOI: 10.2478/scjme-2020-000810.2478/scjme-2020-0008 Search in Google Scholar

[28] Trung, D. D. “Influence of Cutting Parameters on Surface Roughness during Milling AISI 1045 Steel”, Tribology in Industry 42 (4), pp. 658 – 665, 2020. DOI: 10.24874/ti.969.09.20.1110.24874/ti.969.09.20.11 Search in Google Scholar

[29] Trung, D. D. “A combination method for multi-criteria decision making problem in turning process”, Manufacturing Review 8 (26), pp. 1 - 17, 2021. DOI: 10.1051/mfreview/202102410.1051/mfreview/2021024 Search in Google Scholar

[30] Sandeep, M. J., Manjunath, G. C. P., Ganesh, R. C., Mahesh, B. P., Daivagnau, M. “Multi Response Optimization of Green Sand Moulding Parameters Using Taguchi-DEAR Method”, Applied Mechanics and Materials 895, pp. 1 - 7, 2019. DOI: 10.4028/www.scientific.net/AMM.895.110.4028/www.scientific.net/AMM.895.1 Search in Google Scholar

[31] Reddy, V. V., Reddy, C. S. “Multi Response Optimization of EDM of AA6082 Material using Taguchi- DEAR Method”, International Journal of Scientific & Engineering Research 7 (6), pp. 215 – 219, 2016. Search in Google Scholar

eISSN:
2450-5471
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics