Acceso abierto

Effects of Surface Roughness and Supply Inertia on Steady Performance of Hydrostatic Thrust Bearings Lubricated with Non-Newtonian Fluids


Cite

[1] Lamperová, K., Sokol, M., Timková, B. “Identification of Bearings State on the Bridge Checked by Dynamic Tests”, Strojnícky časopis – Journal of Mechanical Engineering 70 (2), pp. 67 – 76, 2020. DOI: 10.2478/scjme-2020-002110.2478/scjme-2020-0021 Search in Google Scholar

[2] Úradníček, J., Musil, M., Bachratý, M. “Frequency response function measurement on simplified disc brake model”, Strojnícky časopis – Journal of Mechanical Engineering 68 (3), pp. 225 – 230, 2018. DOI: 10.2478/scjme-2018-003610.2478/scjme-2018-0036 Search in Google Scholar

[3] Handral, P. et al. “Optimization of sluice gate under fatigue life subjected for forced vibration by fluid flow”, Strojnícky časopis – Journal of Mechanical Engineering 68 (3), pp. 129 – 142, 2018. DOI: 10.2478/scjme-2018-003110.2478/scjme-2018-0031 Search in Google Scholar

[4] Singh, U. P., Gupta, R. S., Kapur, V. K. “On the steady performance of hydrostatic thrust bearing: Rabinowitsch fluid model”, Tribol. Trans. 54, pp. 723 – 729, 2011. DOI: 10.1080/10402004.2011.59754110.1080/10402004.2011.597541 Search in Google Scholar

[5] Sawano, H., Nakamura, Y., Yoshioka, H., Shinno, H. “High performance hydrostatic bearing using a variable inherent restrictor with a thin metal plate”, Precis. Eng. 41 (1), pp. 78 – 85, 2015. DOI: 10.1016/j.precisioneng.2015.02.00110.1016/j.precisioneng.2015.02.001 Search in Google Scholar

[6] Younes, Y. K. “A revised design of circular hydrostatic bearings for optimal pumping power”, Tribol. Int. 26 (3), pp. 195 – 200, 1993. DOI: 10.1016/0301-679X(93)90093-G.10.1016/0301-679X(93)90093-G Search in Google Scholar

[7] Coombs, J. A., Dowson, D. “An experimental investigation of the effects of lubricant inertia in a hydrostatic thrust bearing”, Proc. Inst. Mech. Engrs., London, 179, pp. 96 – 108, 1964.10.1243/PIME_CONF_1964_179_270_02 Search in Google Scholar

[8] Nada, G. S., Osman, T. A. “Static performance of finite hydrodynamic journal bearings lubricated by magnetic fluids with couple stresses”, Tribol. Lett., 2007. DOI: 10.1007/s11249-007-9222-010.1007/s11249-007-9222-0 Search in Google Scholar

[9] Christensen, H. “Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces”, Proc. Inst. Mech. Eng., 184 (1), pp. 1013–26, 1969. DOI: 10.1243/PIME_PROC_1969_184_074_02.10.1243/PIME_PROC_1969_184_074_02 Search in Google Scholar

[10] Yadav, J. S., Kapur, V. K. “On the viscosity variation with temperature and pressure in thrust bearing”, Int. J. Eng. Sci. 19 (2), pp. 269 – 277, 1981. DOI: 10.1016/0020-7225(81)90027-610.1016/0020-7225(81)90027-6 Search in Google Scholar

[11] Kapur, V. K., Verma, K. “The simultaneous effects of inertia and temperature on the performance of a hydrostatic thrust bearing”, Wear, 54 (1), pp. 113 – 122, 1979. DOI: 10.1016/0043-1648(79)90050-410.1016/0043-1648(79)90050-4 Search in Google Scholar

[12] Lin, J. R. “Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids”, Tribol. Int. 32 (4), pp. 207 – 216, 1999. DOI: 10.1016/S0301-679X(99)00034-110.1016/S0301-679X(99)00034-1 Search in Google Scholar

[13] Singh, U. P., Gupta, R. S., Kapur, V. K. “On the steady performance of annular hydrostatic thrust bearing: Rabinowitsch fluid model”, J. Tribol. 134 (4), pp. 1–5, 2012. DOI: 10.1115/1.400735010.1115/1.4007350 Search in Google Scholar

[14] Singh, U. P., Gupta, R. S., Kapur, V. K. “Effects of inertia in the steady state pressurised flow of a non-Newtonian fluid between two curvilinear surfaces of revolution: Rabinowitsch fluid model”, Chem. Process Eng. 32 (4), pp. 333 – 349, 2011. [Online]. Available: https://doi.org/10.2478/v10176-011-0027-110.2478/v10176-011-0027-1 Search in Google Scholar

[15] Singh, U. P., Gupta, R. S., Kapur, V. K. “On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing”, Tribol. Int. 58, pp. 65 – 70, 2013. DOI: 10.1016/j.triboint.2012.09.01410.1016/j.triboint.2012.09.014 Search in Google Scholar

[16] Osterle, J. F., Hughes, W. F. “The effect of lubricant inertia in hydrostatic thrust-bearing lubrication”, Wear 1 (6). pp. 465 – 471, 1958.10.1016/0043-1648(58)90515-5 Search in Google Scholar

[17] Bakker, O. J., van Ostayen, R. a. J. “Recess Depth Optimization for Rotating, Annular, and Circular Recess Hydrostatic Thrust Bearings,” J. Tribol. 132 (1), p. (011103) 1 – 7, 2010. DOI: 10.1115/1.400054510.1115/1.4000545 Search in Google Scholar

[18] Xuebing, Y., Wanli, X., Lang, L., Zhiquan, H. “Analysis of the Combined Effect of the Surface Roughness and Inertia on the Performance of High-Speed Hydrostatic Thrust Bearing”, in Advanced Tribology, pp. 197 – 201, 2009.10.1007/978-3-642-03653-8_66 Search in Google Scholar

[19] Walicka, A., Walicki, E., Jurczak, P., Falicki, J. “Thrust Bearing with Rough Surfaces Lubricated by an Ellis Fluid,” Int. J. Appl. Mech. Eng., 2014. DOI: 10.2478/ijame-2014-005610.2478/ijame-2014-0056 Search in Google Scholar

[20] Lin, J. R. “Surface roughness effect on the dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearings”, Int. J. Mach. Tools Manuf. 40 (11), pp. 167 – 179, 2000. DOI: 10.1016/S0890-6955(00)00012-2.10.1016/S0890-6955(00)00012-2 Search in Google Scholar

[21] Walicka, A., Walicki, E., Jurczak, P., Falicki, J. “Curvilinear squeeze film bearing with porous wall lubricated by a Rabinowitsch fluid”, Int. J. Appl. Mech. Eng., 2017. DOI: 10.1515/-0026. Search in Google Scholar

[22] Peterson, J., Finn, W. E., Dareing, D. W. “Non-Newtonian temperature and pressure effects of a lubricant slurry in rotating hydrostatic step bearing”, Tribol. Trans. 37 (4), pp. 857 – 863, 1994.10.1080/10402009408983369 Search in Google Scholar

[23] Wada, S., Hayashi, H. “Hydrodynamic Lubrication of Journal Bearings by Pseudo-Plastic Lubricants : Part 2, Experimental Studies”, Bull. JSME 14 (69), pp. 279 – 86, 1971. DOI: 10.1299/jsme1958.14.27910.1299/jsme1958.14.279 Search in Google Scholar

[24] Spikes, H. A. “The Behaviour of Lubricants in Contacts: Current Understanding and Future Possibilities”, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 208, pp. 3 – 7, 1994. DOI: 10.1243/PIME_PROC_1994_208_345_02.10.1243/PIME_PROC_1994_208_345_02 Search in Google Scholar

[25] Elsharkawy, A. A. “Effects of lubricant additives on the performance of hydrodynamically lubricated journal bearings”, Tribol. Lett. 18 (1), pp. 63 – 73, 2005. DOI: 10.1007/s11249-004-1758-710.1007/s11249-004-1758-7 Search in Google Scholar

[26] Hsu, Y. C., Saibel, E. “Slider bearing performance with a non-newtonian lubricant”, ASLE Trans. 8 (2), pp. 191 – 194, 1965. DOI: 10.1080/0569819650897209310.1080/05698196508972093 Search in Google Scholar

[27] Singh, U. P., Gupta, R. S., Kapur, V. K. “On the application of Rabinowitsch fluid model on an annular ring hydrostatic thrust bearing”, Tribol. Int. 58, pp. 65 – 70, 2013.10.1016/j.triboint.2012.09.014 Search in Google Scholar

[28] Singh, U. P., Gupta, R. S., Kapur, V. K. “On the performance of pivoted curved slider bearings: Rabinowitsch fluid model”, Tribol. Ind. 34 (3), pp. 128 – 137, 2012. DOI: 10.1016/j.strusafe.2004.04.00110.1016/j.strusafe.2004.04.001 Search in Google Scholar

[29] Singh, U. P., Gupta, R. S., Kapur, V. K. “Non-Newtonian Effects on the Squeeze Film Characteristics between a Sphere and A Flat Plate: Rabinowitsch Model”, Adv. Tribol. 2012 (ArticleID:571036), pp. 1 – 7, 2012. DOI:10.1155/2012/57103610.1155/2012/571036 Search in Google Scholar

[30] Singh, U. P., Gupta, R. S., Kapur, V. K. “On the squeeze film characteristics between a long cylinder and a flat plate: Rabinowitsch model”, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227 (1), pp. 34 – 42, 2013. DOI: 10.1177/135065011245874210.1177/1350650112458742 Search in Google Scholar

[31] Lin, J. R. “Non-Newtonian squeeze film characteristics between parallel annular disks: Rabinowitsch fluid model”, Tribol. Int. 52, pp. 190 – 194, 2012. DOI: 10.1016/j.triboint.2012.02.01710.1016/j.triboint.2012.02.017 Search in Google Scholar

[32] Sharma, S. C., Yadav, S. K. “Performance of hydrostatic circular thrust pad bearing operating with Rabinowitsch fluid model”, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 227 (11), pp. 1272 – 1284, 2013. DOI: 10.1177/135065011349014710.1177/1350650113490147 Search in Google Scholar

eISSN:
2450-5471
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Mechanical Engineering, Fundamentals of Mechanical Engineering, Mechanics