Cite

‘Les capacités électriques renouvelables dans le monde : statistiques 2022 | Connaissances des énergies’, Apr. 19, 2022. https://www.connaissancedesenergies.org/lescapacites-electriques-renouvelables-dans-le-mondestatistiques-2022-230328 (accessed Jun. 24, 2023). Search in Google Scholar

‘5 places running on 100% renewable energy’, World Smart Cities Forum, Nov. 04, 2020. https://worldsmartcities.org/5-places-running-on-100-renewable-energy/ (accessed Jun. 24, 2023). Search in Google Scholar

‘Transition Town Fujino Goes for Local Energy Independence - Our World’. https://ourworld.unu.edu/en/transition-town-fujino-goes-for-local-energy-independence (accessed Jun. 24, 2023). Search in Google Scholar

‘Energy target 2050: 100 % renewable electricity supply’. Search in Google Scholar

‘City of Paris: Carbon Neutral by 2050 for a Fair, Inclusive and Resilient Transition | France | UNFCCC’. https://unfccc.int/climate-action/un-global-climate-action-awards/climate-leaders/city-of-paris (accessed Jun. 24, 2023). Search in Google Scholar

‘List of Renewable Energy Projects | Open For Investment’, Distributed Energy. https://de.energy/projects/ (accessed Jun. 24, 2023). Search in Google Scholar

D. C. FirmoGraphs PE-President, ‘10 major wind projects in development in 2022’, Renewable Energy World, Aug. 23, 2022. https://www.renewableenergyworld.com/wind-power/10-major-wind-projects-in-development-in-2022/ (accessed Jun. 24, 2023). Search in Google Scholar

T. Kerdphol, F. S. Rahman, M. Watanabe, and Y. Mitani, Virtual Inertia Synthesis and Control. in Power Systems. Cham: Springer International Publishing, 2021. doi: 10.1007/978-3-030-57961-6. Search in Google Scholar

‘Integrated-Final-Report-SA-Black-System-28-September-2016.pdf’. Accessed: Jun. 24, 2023. [Online]. Available: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrate d-Final-Report-SA-Black-System-28-September-2016.pdf Search in Google Scholar

J. Bialek, ‘What does the power outage on 9 August 2019 tell us about GB power system’. Search in Google Scholar

H. Bevrani, Robust Power System Frequency Control. Boston, MA: Springer US, 2009. doi: 10.1007/978-0-387-84878-5. Search in Google Scholar

C. Sun, ‘Virtual Synchronous Machine Control for Islanded Microgrids with Reduced Inertia’, Department of Electrical and Computer Engineering McGill University, Montreal, Quebec, 2020. Search in Google Scholar

M. A. Islam, “Implementation of virtual synchronous generator methodologies for renewable integration,” Ph.D. dissertation, Temple University, 2017. Search in Google Scholar

Md. N. H. Shazon, Nahid-Al-Masood, and A. Jawad, ‘Frequency control challenges and potential countermeasures in future low-inertia power systems: A review’, Energy Rep., vol. 8, pp. 6191–6219, Nov. 2022, doi: 10.1016/j.egyr.2022.04.063. Search in Google Scholar

K. S. Ratnam, K. Palanisamy, and G. Yang, ‘Future low-inertia power systems: Requirements, issues, and solutions - A review’, Renew. Sustain. Energy Rev., vol. 124, p. 109773, May 2020, doi: 10.1016/j.rser.2020.109773. Search in Google Scholar

H.-P. Beck and R. Hesse, ‘Virtual synchronous machine’, in 2007 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain: IEEE, Oct. 2007, pp. 1–6. doi: 10.1109/EPQU.2007.4424220. Search in Google Scholar

O. O. Mohammed, A. O. Otuoze, S. Salisu, O. Ibrahim, and N. A. Rufa’i, ‘Virtual synchronous generator: an overview’, Niger. J. Technol., vol. 38, no. 1, p. 153, Jan. 2019, doi: 10.4314/njt.v38i1.20. Search in Google Scholar

F. J. N. Martins, ‘Virtual Synchronous Machine’. Search in Google Scholar

K. M. Cheema, ‘A comprehensive review of virtual synchronous generator’, Int. J. Electr. Power Energy Syst., vol. 120, p. 106006, Sep. 2020, doi: 10.1016/j.ijepes.2020.106006. Search in Google Scholar

X. Zhang, Z. Zhu, Y. Fu, and L. Li, ‘Optimized virtual inertia of wind turbine for rotor angle stability in interconnected power systems’, Electr. Power Syst. Res., vol. 180, p. 106157, Mar. 2020, doi: 10.1016/j.epsr.2019.106157. Search in Google Scholar

R. Mandal and K. Chatterjee, ‘Virtual inertia emulation and RoCoF control of a microgrid with high renewable power penetration’, Electr. Power Syst. Res., vol. 194, p. 107093, May 2021, doi: 10.1016/j.epsr.2021.107093. Search in Google Scholar

A. W. Kumar, M. Ud Din Mufti, and M. Y. Zargar, ‘Fuzzy based virtual inertia emulation in a multi-area wind penetrated power system using adaptive predictive control based flywheel storage’, Sustain. Energy Technol. Assess., vol. 53, p. 102515, Oct. 2022, doi: 10.1016/j.seta.2022.102515. Search in Google Scholar

B. Long, Y. Liao, K. T. Chong, J. Rodriguez, and J. M. Guerrero, ‘MPC-Controlled Virtual Synchronous Generator to Enhance Frequency and Voltage Dynamic Performance in Islanded Microgrids’, IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 953–964, Mar. 2021, doi: 10.1109/TSG.2020.3027051. Search in Google Scholar

L. Lu and N. A. Cutululis, ‘Virtual synchronous machine control for wind turbines: a review’, J. Phys. Conf. Ser., vol. 1356, no. 1, p. 012028, Oct. 2019, doi: 10.1088/1742-6596/1356/1/012028. Search in Google Scholar

V. Mallemaci, F. Mandrile, S. Rubino, A. Mazza, E. Carpaneto, and R. Bojoi, ‘A comprehensive comparison of Virtual Synchronous Generators with focus on virtual inertia and frequency regulation’, Electr. Power Syst. Res., vol. 201, p. 107516, Dec. 2021, doi: 10.1016/j.epsr.2021.107516. Search in Google Scholar

K. Prabhakar, S. K. Jain, and P. K. Padhy, ‘Inertia estimation in modern power system: A comprehensive review’, Electr. Power Syst. Res., vol. 211, p. 108222, Oct. 2022, doi: 10.1016/j.epsr.2022.108222. Search in Google Scholar

M. H. Moradi and F. Amiri, ‘Virtual inertia control in islanded microgrid by using robust model predictive control (RMPC) with considering the time delay’, Soft Comput., vol. 25, no. 8, pp. 6653–6663, Apr. 2021, doi: 10.1007/s00500-021-05662-z. Search in Google Scholar

I. Bennia, Y. Daili, and A. Harrag, ‘Hierarchical Control of Paralleled Voltage Source Inverters in Islanded Single Phase Microgrids’, in Artificial Intelligence and Renewables Towards an Energy Transition, M. Hatti, Ed., in Lecture Notes in Networks and Systems, vol. 174. Cham: Springer International Publishing, 2021, pp. 302–313. doi: 10.1007/978-3-030-63846-7_30. Search in Google Scholar

‘The Journal of Engineering - 2019 - Yan -Novel adapted de‐loading control strategy for PV generation participating in grid.pdf’. Search in Google Scholar

P. Li, W. Hu, R. Hu, Q. Huang, J. Yao, and Z. Chen, ‘Strategy for wind power plant contribution to frequency control under variable wind speed’, Renew. Energy, vol. 130, pp. 1226–1236, Jan. 2019, doi: 10.1016/j.renene.2017.12.046. Search in Google Scholar

R. Luthander, D. Lingfors, and J. Widén, ‘Large-scale integration of photovoltaic power in a distribution grid using power curtailment and energy storage’, Sol. Energy, vol. 155, pp. 1319–1325, Oct. 2017, doi: 10.1016/j.solener.2017.07.083. Search in Google Scholar

K. Guo, J. Fang, and Y. Tang, ‘Autonomous DC-Link Voltage Restoration for Grid-Connected Power Converters Providing Virtual Inertia’, in 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA: IEEE, Sep. 2018, pp. 6387–6391. doi: 10.1109/ECCE.2018.8557440. Search in Google Scholar

F. Gonzalez-Longatt, E. Chikuni, and E. Rashayi, ‘Effects of the Synthetic Inertia from wind power on the total system inertia after a frequency disturbance’, in 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town: IEEE, Feb. 2013, pp. 826–832. doi: 10.1109/ICIT.2013.6505779. Search in Google Scholar

J. Driesen and K. Visscher, ‘Virtual synchronous generators’, in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA: IEEE, Jul. 2008, pp. 1–3. doi: 10.1109/PES.2008.4596800. Search in Google Scholar

Q.-C. Zhong and G. Weiss, ‘Synchronverters: Inverters That Mimic Synchronous Generators’, IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1259–1267, Apr. 2011, doi: 10.1109/TIE.2010.2048839. Search in Google Scholar

X. Gao, D. Zhou, A. Anvari-Moghaddam, and F. Blaabjerg, ‘A Comparative Study of Grid-Following and Grid-Forming Control Schemes in Power Electronic-Based Power Systems’, Power Electron. Drives, vol. 8, no. 1, pp. 1–20, Jan. 2023, doi: 10.2478/pead-2023-0001 Search in Google Scholar

T. Ise, ‘Chapter 12 - Virtual synchronous generators and their applications in microgrids’. Search in Google Scholar

M. Chen, D. Zhou, and F. Blaabjerg, ‘Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems’, J. Mod. Power Syst. Clean Energy, vol. 8, no. 3, pp. 399–411, 2020, doi: 10.35833/MPCE.2019.000592. Search in Google Scholar

Dongxu Wang and Hongbin Wu, ‘Application of virtual synchronous generator technology in microgrid’, in 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMCECCE Asia), Hefei, China: IEEE, May 2016, pp. 3142–3148. doi: 10.1109/IPEMC.2016.7512798. Search in Google Scholar

R. Hesse, D. Turschner, and H.-P. Beck, ‘Micro grid stabilization using the virtual synchronous machine (VISMA)’, Renew. Energy Power Qual. J., vol. 1, no. 07, pp. 676–681, Apr. 2009, doi: 10.24084/repqj07.472. Search in Google Scholar

Y. Hirase, K. Abe, K. Sugimoto, and Y. Shindo, ‘A grid-connected inverter with virtual synchronous generator model of algebraic type’, Electr. Eng. Jpn., vol. 184, no. 4, pp. 10–21, Sep. 2013, doi: 10.1002/eej.22428. Search in Google Scholar

K. Sakimoto, Y. Miura, and T. Ise, ‘Stabilization of a power system with a distributed generator by a Virtual Synchronous Generator function’, in 8th International Conference on Power Electronics - ECCE Asia, Jeju, Korea (South): IEEE, May 2011, pp. 1498–1505. doi: 10.1109/ICPE.2011.5944492. Search in Google Scholar

R. Shi, X. Zhang, C. Hu, H. Xu, J. Gu, and W. Cao, ‘Self-tuning virtual synchronous generator control for improving frequency stability in autonomous photovoltaic-diesel microgrids’, J. Mod. Power Syst. Clean Energy, vol. 6, no. 3, pp. 482–494, May 2018, doi: 10.1007/s40565-017-0347-3. Search in Google Scholar

X. Yan, S. Y. A. Mohamed, D. Li, and A. S. Gadalla, ‘Parallel operation of virtual synchronous generators and synchronous generators in a microgrid’, J. Eng., vol. 2019, no. 16, pp. 2635–2642, Mar. 2019, doi: 10.1049/joe.2018.8644. Search in Google Scholar

Jianhui Meng, Xinchun Shi, Yi Wang, and Chao Fu, ‘A virtual synchronous generator control strategy for distributed generation’, in 2014 China International Conference on Electricity Distribution (CICED), Shenzhen, China: IEEE, Sep. 2014, pp. 495–498. doi: 10.1109/CICED.2014.6991757. Search in Google Scholar

I. Serban and C. P. Ion, ‘Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability’, Int. J. Electr. Power Energy Syst., vol. 89, pp. 94–105, Jul. 2017, doi: 10.1016/j.ijepes.2017.01.009. Search in Google Scholar

T. Kerdphol, F. Rahman, and Y. Mitani, ‘Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration’, Energies, vol. 11, no. 4, p. 981, Apr. 2018, doi: 10.3390/en11040981. Search in Google Scholar

M. Li, W. Huang, N. Tai, and D. Duan, ‘Virtual Inertia Control of the Virtual Synchronous Generator: A Review’. Search in Google Scholar

J. Liu, Y. Miura, H. Bevrani, and T. Ise, ‘Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids’, IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268–2277, Sep. 2017, doi: 10.1109/TSG.2016.2521405. Search in Google Scholar

Tsinghua University et al., ‘VSG-based adaptive droop control for frequency and active power regulation in the MTDC system’, CSEE J. Power Energy Syst., vol. 3, no. 3, pp. 260–268, Oct. 2017, doi: 10.17775/CSEEJPES.2017.00040. Search in Google Scholar

X. Wang, Z. Lv, R. Wang, and X. Hui, ‘Optimization method and stability analysis of MMC grid-connect control system based on virtual synchronous generator technology’, Electr. Power Syst. Res., vol. 182, p. 106209, May 2020, doi: 10.1016/j.epsr.2020.106209. Search in Google Scholar

A. Hosseinipour and H. Hojabri, ‘Virtual inertia control of PV systems for dynamic performance and damping enhancement of DC microgrids with constant power loads’, IET Renew. Power Gener., vol. 12, no. 4, pp. 430–438, Mar. 2018, doi: 10.1049/ietrpg.2017.0468. Search in Google Scholar

Y. Daili and A. Harrag, ‘New Virtual Synchronous Generator Control Technique of Distributed Generator Unit to Improve Transient Response of the Microgrid’, in Proceedings of the 4th International Conference on Electrical Engineering and Control Applications, S. Bououden, M. Chadli, S. Ziani, and I. Zelinka, Eds., in Lecture Notes in Electrical Engineering, vol. 682. Singapore: Springer Nature Singapore, 2021, pp. 361–371. doi: 10.1007/978-981-15-6403-1_25. Search in Google Scholar

T. Zheng, L. Chen, Y. Guo, and S. Mei, ‘Comprehensive control strategy of virtual synchronous generator under unbalanced voltage conditions’, IET Gener. Transm. Distrib., vol. 12, no. 7, pp. 1621–1630, Apr. 2018, doi: 10.1049/iet-gtd.2017.0523. Search in Google Scholar

A. Fathi, Q. Shafiee, and H. Bevrani, ‘Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator’, IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6289–6297, Nov. 2018, doi: 10.1109/TPWRS.2018.2850880. Search in Google Scholar

T. Kerdphol, M. Watanabe, K. Hongesombut, and Y. Mitani, ‘Self-Adaptive Virtual Inertia Control-Based Fuzzy Logic to Improve Frequency Stability of Microgrid With High Renewable Penetration’, IEEE Access, vol. 7, pp. 76071–76083, 2019, doi: 10.1109/ACCESS.2019.2920886. Search in Google Scholar

X. Zhang et al., ‘Fuzzy adaptive virtual inertia control of energy storage systems considering SOC constraints’, Energy Rep., vol. 9, pp. 2431–2439, Dec. 2023, doi: 10.1016/j.egyr.2023.01.078. Search in Google Scholar

F. S. Rahman, T. Kerdphol, M. Watanabe, and Y. Mitani, ‘Optimization of virtual inertia considering system frequency protection scheme’, Electr. Power Syst. Res., vol. 170, pp. 294–302, May 2019, doi: 10.1016/j.epsr.2019.01.025. Search in Google Scholar

J. Zhang, F. Li, T. Chen, Y. Cao, D. Wang, and X. Gao, ‘Virtual inertia control parameter regulator of doubly fed induction generator based on direct heuristic dynamic programming’, Energy Rep., vol. 8, pp. 259–266, Nov. 2022, doi: 10.1016/j.egyr.2022.05.190. Search in Google Scholar

P. E. Muñoz, S. A. González, and R. J. Mantz, ‘Distributed generation contribution to primary frequency control through virtual inertia and damping by reference conditioning’, Electr. Power Syst. Res., vol. 211, p. 108168, Oct. 2022, doi: 10.1016/j.epsr.2022.108168. Search in Google Scholar