Acceso abierto

A Case Study on the Effect of Printing Temperature on the Tensile Strength of 3D Printed Parts with PLA Material


Cite

[1] S.H. Ghaffar, J. Corker, M. Z. Fan. “Additive manufacturing technology and its implementation in construction as an ecoinnovative solution”. Automation in Construction, vol 93, pp: 1–11,2018.10.1016/j.autcon.2018.05.005 Search in Google Scholar

[2] S. Ghaffar, P. Mullett. “Commentary: 3D printing set to transform the construction industry”. Proceedings of the Institution of Civil Engineers - Structures and Buildings, vol. 171(10), pp. 737–738, 2018.10.1680/jstbu.18.00136 Search in Google Scholar

[3] N. Labonnote, A. Ronnquist, B. Manum, P. Ruther. “Additive construction: state-of-the-art, challenges and opportunities”. Automation in Construction, vol. 72, pp:347–366, 2016.10.1016/j.autcon.2016.08.026 Search in Google Scholar

[4] P.A. Kobryn, N.R. Ontko, L.P. Perkins, J.S. Tiley “Additive Manufacturing of Aerospace Alloys for Aircraft Structures”. Meeting Proceedings RTOMP-AVT-139, pp. 3-12, France, 2006. Search in Google Scholar

[5] L. E. Murr (2016) “Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication”. Journal of Materials Science & Technology, vol. 32(10), pp. 987-995, 2016.10.1016/j.jmst.2016.08.011 Search in Google Scholar

[6] R.K. Chen, J. Y-a, J. Wensman, A. Shih. “Additive manufacturing of custom orthoses and prostheses— A review”. Additive Manufacturing, vol 12(A), pp. 77-89, October 2016.10.1016/j.addma.2016.04.002 Search in Google Scholar

[7] S. Knowlton, B. Yenilmez, S. Tasoglu. “Towards single-step biofabrication of organs on a chip via 3D printing”. Trends in Biotechnology, vol. 34(9), pp. 685-688, 2016.10.1016/j.tibtech.2016.06.00527424152 Search in Google Scholar

[8] S. Ji, M. Guvendiren. “Recent advances in bioink design for 3D bioprinting of tissues and organs”. Frontiers in bioengineering and biotechnology vol. 5(23), 2017.10.3389/fbioe.2017.00023538073828424770 Search in Google Scholar

[9] E. Lepowsky, S. Tasoglu. “3Dprinting for drug manufacturing: a perspective on the future of pharmaceuticals”. International journal of bioprinting, vol. 4(1), 2017.10.18063/ijb.v1i1.119 Search in Google Scholar

[10] J. Won, K. DeLaurentis, C. Mavroidis. “Rapid prototyping of robotic systems”. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol.4, pp. 3077-3082, 2000. Search in Google Scholar

[11] W. C. Tse, Y. H. Chen, “A robotic system for rapid prototyping”. Proceedings of International Conference on Robotics and Automation, vol. 3, pp. 1815-1820, 1997. Search in Google Scholar

[12] S. H. Ahn, C. Baek, S. Lee, I.S, Ahn. “Anisotropic tensile failure model of rapid prototyping parts-fused deposition modeling (FDM)”. International Journal of Modern Physics B, vol. 17(08n09), pp. 1510–1516, 2003.10.1142/S0217979203019241 Search in Google Scholar

[13] A.K. Sood, R.K. Ohdar, S.S. Mahapatra. “Parametric appraisal of mechanical property of fused deposition modelling processed parts”. Materials & Design, vol. 31(1), pp. 287-295, 2010.10.1016/j.matdes.2009.06.016 Search in Google Scholar

[14] A. Farzadi, M. Solati-Hashjin, M. Asadi-Eydivand, N.A.A. Osman. “Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering”. PLOS ONE 9(9): e108252, 2014.10.1371/journal.pone.0108252416950525233468 Search in Google Scholar

[15] H. Rezayat, W. Zhou, A. Siriruk, D. Penumadu & S. S. Babu. “Structure–mechanical property relationship in fused deposition modelling”. Materials Science and Technology, vol. 31(8), pp. 895-903, 2015.10.1179/1743284715Y.0000000010 Search in Google Scholar

[16] W. Pivsa-Art, A. Chaiyasat, S. Pivsa-Art, H. Yamane, H. Ohara. “Preparation of polymer blends between poly (lactic acid) and poly (butylene adipate-co-terephthalate) and biodegradable polymers as compatibilizers”. Energy Procedia vol, (34), pp. 549–554,2013.10.1016/j.egypro.2013.06.784 Search in Google Scholar

[17] J. Zhang, S. Wang, Y. Qiao, Q. Li. “Effect of morphology designing on the structure and properties of PLA/PEG/ABS blends”. Colloid and Polymer Science, vol. 294(11), pp. 1779–1787, 2016.10.1007/s00396-016-3940-5 Search in Google Scholar

[18] I.J. Choe, J.H. Lee, J.H. Yu, J.S. Yoon. “Mechanical properties of acrylonitrile–butadiene– styrene copolymer/poly (l-lactic acid) blends and their composites”. Journal of Applied Polymer Science, vol. 131(11), 2014.10.1002/app.40329 Search in Google Scholar

[19] M.Y. Jo, Y.J. Ryu, J.H. Ko, J.S. Yoon. “Effects of compatibilizers on the mechanical properties of ABS/PLA composites”. Journal of Applied Polymer Science, vol. 125(S2), pp. 231–238, 2012.10.1002/app.36732 Search in Google Scholar

[20] C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere. “Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory”. Materials & Design, vol. 90, pp.453–458, 2016.10.1016/j.matdes.2015.11.009 Search in Google Scholar

[21] B. Rankouhi, S. Javadpour, F. Delfanian, T. Letcher. “Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation”. Journal of Failure Analysis and Prevention, vol. 16, pp.467–481, 2016.10.1007/s11668-016-0113-2 Search in Google Scholar