Acceso abierto

Exposure to chlorine affects the extracellular polymeric substance production and cell surface hydrophobicity in biofilm bacteria


Cite

[1] Anbananthan, N. (2008). Control of biofouling and concomitant biocorrosion using Chlorine dioxide. In symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries (OPENWAC -2008) 15–16 December 2008 (pp 154–158). Kalpakkam, India: Water and Steam Chemistry division, BARC. Search in Google Scholar

[2] Bos, R., Van der Mei, H.C.& Busscher, H.J. (1999). Physico-chemistry of initial microbial adhesive interactions-its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230. 10.1016/S0168-6445(99)00004-2 Search in Google Scholar

[3] Bott, T.R. (1999). Biofilms in process and industrial waters: the biofilm ecology of microbial biofouling, biocide resistance and corrosion. In C.W. Keevil, A. Godfree, D. Holt, & C. Dow (Eds.), Biofilms in the Aquatic Environment (pp. 80–92). London: Royal Society of Chemistry. Search in Google Scholar

[4] Bunt, R., Jones, S.& Tucker, G. (1993). The effects of pH, ionic strength and organic phase on the bacterial adhesion to hydrocarbons (BATH) test. Int. J. Pharm. 99, 93–98. http://dx.doi.org/10.1016/0378-5173(93)90350-O10.1016/0378-5173(93)90350-O Search in Google Scholar

[5] Busscher, H.J. & Van der Mei, H.C. (2000). Initial microbial adhesion events: Mechanisms and implications. In D.G. Allison, P. Gillbert, H.M. Lappin-Scott & M. Wilson (Eds.), Community structure and co-operation in biofilms (pp. 25–36). Cambridge, UK: Cambridge University press. http://dx.doi.org/10.1017/CBO9780511754814.00310.1017/CBO9780511754814.003 Search in Google Scholar

[6] Caccavo, F.Jr., Schamberger, P.C., Keiding, K.& Neilson, P.H. (1997). Role of hydrophobicity in adhesion of the dissimilatory Fe(III) oxide. Appl. Environ. Microbiol. 63, 3837–3843. 10.1128/aem.63.10.3837-3843.1997 Search in Google Scholar

[7] Chapman, J.J. (2003). Biocide resistance mechanism. Int. Biodeterior. Biodegrad. 51, 133–138. http://dx.doi.org/10.1016/S0964-8305(02)00097-510.1016/S0964-8305(02)00097-5 Search in Google Scholar

[8] Cross, J.B., Currier, R.P., Torraco, D.J., Vanderberg, L.A., Wagner, G.L.& Laden, P.D. (2003). Killing of Bacillus spores by aqueous dissolved oxygen, ascorbic acid and copper ions. Appl. Environ. Microbiol. 69, 2245–2252. http://dx.doi.org/10.1128/AEM.69.4.2245-2252.200310.1128/AEM.69.4.2245-2252.2003 Search in Google Scholar

[9] Decho, A.W. (1990). Microbial expolymer secretions in ocean environments: their role in food webs and marine processes. Oceanogr. Mar. Biol. Ann. Rev. 28, 73–153. Search in Google Scholar

[10] D’souza, F. & Bhosle, N.B. (2003). Analysis of microfouling products formed on metallic surfaces exposed in a marine environment. Biofouling 19, 95–107. http://dx.doi.org/10.1080/089270102100002614710.1080/0892701021000026147 Search in Google Scholar

[11] Dubois, M. (1956). Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356. http://dx.doi.org/10.1021/ac60111a01710.1021/ac60111a017 Search in Google Scholar

[12] Hassett, D.J., Elkins, J.G., Ma, J.F.& McDermott, T.R. (1999). Pseudomonas aeruginosa biofilm Sensitivity to biocides: use of hydrogen peroxide as model antimicrobial agent for examining resistance mechanisms. Methods Enzymol. 310, 599–608. http://dx.doi.org/10.1016/S0076-6879(99)10046-610.1016/S0076-6879(99)10046-6 Search in Google Scholar

[13] Jain, A., Nishad, K.K., Narayan, K.K.& Bhosle, B. (2007). Effects of DNP on the cell surface properties of marine bacteria and its implication for adhesion to surfaces. Biofouling 23, 171–177. http://dx.doi.org/10.1080/0892701070126964110.1080/0892701070126964117653928 Search in Google Scholar

[14] Jenner, H.A., Taylor, C.J.L., Van Donk, M.& Khalanski, M. (1997). Chlorination by-products in chlorinated cooling water of some European coastal power stations. Mar. Environ. Res. 43, 279–293. http://dx.doi.org/10.1016/S0141-1136(96)00091-810.1016/S0141-1136(96)00091-8 Search in Google Scholar

[15] Jenner, H.A., Whitehouse, J.W., Taylor, C.J.L. & Khalanski, M. (1998). Cooling water management in European power stations: biology and control. Hydroecologie Applique e 1–2 (pp. 1–225), Chatou, Paris: Electricite’ de France. Search in Google Scholar

[16] Korber, D.R., Lawrence, J.R., Sulton, B.& Caldwell, D.E. (1989). Effect of laminar flow velocity on the kinetics of surface recolonization by Mot+ and Mot-Pseudomonas fluorescens. Microb. Ecol. 18, 1–19. http://dx.doi.org/10.1007/BF0201169210.1007/BF02011692 Search in Google Scholar

[17] Leroy, C., Delbarre-Ladrat, C., Ghillebaert, F., Rochet, M.J., Compere, C. & Combes, D. (2007). A marine bacterial adhesion microplate test using the DAPI flourescent dye: a new method to screen antifouling agents. Lett. Appl. Microbiol. 44, 372. http://dx.doi.org/10.1111/j.1472-765X.2006.02103.x10.1111/j.1472-765X.2006.02103.x Search in Google Scholar

[18] Lowry, O., Rosebroug, H., Farr, A. & Randall, R. (1951). Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193, 265–275. 10.1016/S0021-9258(19)52451-6 Search in Google Scholar

[19] Ludensky, M. (2003). Control and monitoring of biofilms in industrial application. Int. Biodeterior. Biodegrad. 51, 255–263. http://dx.doi.org/10.1016/S0964-8305(03)00038-610.1016/S0964-8305(03)00038-6 Search in Google Scholar

[20] Murthy, P.S., Venkatesan, R., Nair, K.V.K.& Ravindran, M. (2004). Biofilm control for plate heat exchangers using surface seawater from the open ocean for the OTEC power plant. Int. Biodeterior. Biodegrad. 53, 133–140. http://dx.doi.org/10.1016/j.ibiod.2003.11.00310.1016/j.ibiod.2003.11.003 Search in Google Scholar

[21] Nair, K.V.K., Satpathy, K.K. & Venugobalan, V.P. (1997). Biofouling control: Current methods and new approaches with emphasis on power plant cooling water systems. In R. Nagabhushanam & M.F. Thompson (Eds.), Fouling organisms of the Indian Ocean: Biology and control technology (pp 159–188). New Delhi: Oxford & IBH Search in Google Scholar

[22] Nancharaiah, Y.V., Vinnitha, E. & Venugopalan., V.P. (2008). Effect of hypochlorite on the planktonic and attached (biofilm) diatom cells. In symposium on operational and environmental issues concerning use of water as a coolant in power plants and industries (OPENWAC-2008) 15–16 December 2008 (pp 407–409). Kalpakkam, India: Water and Steam Chemistry division, BARC. Search in Google Scholar

[23] Phe, M.H., Dossot, M.& Block, J.C. (2004) Chlorination effect on the fluorescence of nucleic acid staining dye. Water Res. 38, 3729–3737 http://dx.doi.org/10.1016/j.watres.2004.05.01810.1016/j.watres.2004.05.018 Search in Google Scholar

[24] Rajagopal, S., Venugopalan, V.P., Van der Velde, G.& Jenner, H.A. (2003). Tolerance of five species of tropical marine mussels to continuous chlorination. Mar. Environ. Res. 55, 277–291 http://dx.doi.org/10.1016/S0141-1136(02)00272-610.1016/S0141-1136(02)00272-6 Search in Google Scholar

[25] Rosenberg, M., Gutnick, D.& Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: a simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 9, 29–33. http://dx.doi.org/10.1111/j.1574-6968.1980.tb05599.x10.1111/j.1574-6968.1980.tb05599.x Search in Google Scholar

[26] Satpathy, K. K. & Nithila, S.D. (2008). Chlorinaton for biofouling control in power plant cooling water system. In symposium on operational and environmental issues concering use of water as a coolant in power plants and industries. (OPENWAC-2008) 15–16 December 2008 (pp 150–153). Kalpakkam, India: Water and Steam Chemistry division, BARC. Search in Google Scholar

[27] Van Loosdrechi, M.C.M., Lyklema, J., Norge, W., Schraa, G. & Zehnder, A.J.B. (1987). Electrophoretic mobility and hyddrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl. Environ. Microbiol. 53, 1898–1901 Search in Google Scholar

[28] Vandevivere, P.& Kirchman, C.L. (1993). Attachment stimulates exopolysaccharide synthesis by a bacterium. Appl. Environ. Microbiol. 59, 3280–3286. 10.1128/aem.59.10.3280-3286.199318244916349064 Search in Google Scholar

[29] Virto, R., Maoas, P., Alvarez, J., Condon, S.& Raso, J. (2005). Membrane damage and microbial inactivation by chlorine in the presence and absence of a chlorine denaturing substrate. Appl. Environ. Microbiol. 71, 5022–5028. http://dx.doi.org/10.1128/AEM.71.9.5022-5028.200510.1128/AEM.71.9.5022-5028.2005 Search in Google Scholar

[30] Wahl, M., Jensen, P.R.& Fenical, W. (1994). Chemical control of bacterial epibiosis on Ascidians. Mar. Ecol. Prog. Ser. 110, 45–57. http://dx.doi.org/10.3354/meps11004510.3354/meps110045 Search in Google Scholar

[31] Walsh, S.E., Catrenich, C.E., Charonneau, D.& Bartolo, R.G. (2003). Activity and mechanism of action of selected biocidal agents on Gram-positive and Gram-negative bacteria. J. Appl. Microbiol. 94, 240–247 http://dx.doi.org/10.1046/j.1365-2672.2003.01825.x10.1046/j.1365-2672.2003.01825.x Search in Google Scholar

[32] Welch, S.A., Barker, W.W.& Banfield, J.F. (1999). Microbial extracellular polysaccharides and plagioclase dissolution. Geochim. Cosmochim. Acta. 63, 1405–1419. http://dx.doi.org/10.1016/S0016-7037(99)00031-910.1016/S0016-7037(99)00031-9 Search in Google Scholar

[33] Zhao, Y.H., Ji, G.D., Cronin, M.& Dearden, J.C. (1998). OSAR study of toxicity of benzoic acids to Vibrio fischeri, Dephnia magna and Carp. Sci. Total Environ. 216, 205–215. http://dx.doi.org/10.1016/S0048-9697(98)00157-010.1016/S0048-9697(98)00157-0 Search in Google Scholar

[34] Zita, A. & Hermansson, M. (1997). Effect of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl. Environ. Microbiol. 63, 1168–1170. 10.1128/aem.63.3.1168-1170.19971684089055433 Search in Google Scholar

eISSN:
1897-3191
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, other, Geosciences, Life Sciences