Cite

[1] Andreae M.O., Jaeschke W.A., 1992, Exchange of sulphur between biosphere and atmosphere over temperate and tropical regions [in:] Sulphur cycling on the Continents: Wetlands, Terrestrial Ecosystems, and Associated Water Bodies, SCOPE 48, Ed. Howarth R W., Chichester, John Wiley & Sons, pp. 27–61 Search in Google Scholar

[2] Abdollahi H., Wimpenny J., 1990, Effects of oxygen on the growth of Desulfovibrio desulfuricans, J. Gen. Microbiol., 136(6): 1025–1030, DOI: 10.1099/002 21287-136-6-1025 Search in Google Scholar

[3] Anderson E.F., Wilson D.J., 2000, A simple field test for acid volatile sulfide in sediments, J. Tennessee. Acad. Sci. 75(3–4): 53–56, http://www.highbeam.com/doc/1G1-78398540.html Search in Google Scholar

[4] Andrews J.E., Brimblecombe P., Jickells T.D., Liss P.S., 2000, An Introduction to Environmental Chemistry, Warszawa, Scientific and Technical Press, pp. 234 (in Polish) Search in Google Scholar

[5] Azad Md.A.K., Ohira S.-I., Oda M., Toda K., 2005, On-site measurements of hydrogen sufide and sulfur dioxide emissions from tidal flat sediments of Ariake Sea, Japan, Atmos. Environ., 39(33): 6077–6087, DOI:10.1016/j.atmosenv.2005.06.042 http://dx.doi.org/10.1016/j.atmosenv.2005.06.04210.1016/j.atmosenv.2005.06.042 Search in Google Scholar

[6] Bates T.S., Charlson R.J., Gammon R.H., 1987, Evidence for the climatic role of marine biogenic sulphur, Nature, 329: 319–321 http://dx.doi.org/10.1038/329319a010.1038/329319a0 Search in Google Scholar

[7] Battersby N.S., 1988, Sulphate-reducting bacteria [in:] Methods on aquatic bacteriology, Ed. Austin B., Chichester, John Wiley & Sons, pp. 269–299 Search in Google Scholar

[8] Berner R.A., 1984, Sedimentary pyrite formation: An update, Geochim. et Cosmochim. Acta, 48(4): 605–615, DOI: 10.1016/0016-7037(84)90089-9 http://dx.doi.org/10.1016/0016-7037(84)90089-910.1016/0016-7037(84)90089-9 Search in Google Scholar

[9] Berner R.A., Raiswell R., 1983, Burial of organic-carbon and pyrite sulfur in sediments over phanerozoic time-a new theory, Geochim. et Cosmochim. Acta, 47(5): 855–862, DOI: 10.1016/0016-7037(83)90151-5 http://dx.doi.org/10.1016/0016-7037(83)90151-510.1016/0016-7037(83)90151-5 Search in Google Scholar

[10] Bitton G., 2005, Wastewater microbiology, New Jersey, John Wiley and Sons, pp. 749 http://dx.doi.org/10.1002/047171796710.1002/0471717967 Search in Google Scholar

[11] Boon A.G., Vincent A.J., 2003, Odour generation and control [in:] The handbook of water and wastewater microbiology, Eds. Mara D., Horan N.J., San Diego, Academic Press, pp. 545–557 http://dx.doi.org/10.1016/B978-012470100-7/50034-010.1016/B978-012470100-7/50034-0 Search in Google Scholar

[12] Borówka R.K., Cedro B., 2001, Skarby Ziemi: Co kryje Ziemia, Poznań, KURPISZ, pp. 239, (in Polish) Search in Google Scholar

[13] Bottrell S.H., Newton R.J., 2006, Reconstruction of changes in global sulfur cycling from marine sulfate isotopes, Earth-Sci. Rev., 75(1–4): 59–83, DOI: 10.1016/j.earscirev.2005.10.004 http://dx.doi.org/10.1016/j.earscirev.2005.10.00410.1016/j.earscirev.2005.10.004 Search in Google Scholar

[14] Böttcher M.E., Thamdrup B., Vennemann T.W., 2001, Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur, Geochim. et Cosmochim. Acta, 65(10): 1601–1609, DOI: 10.1016/S0016-7037(00)00628-1 http://dx.doi.org/10.1016/S0016-7037(00)00628-110.1016/S0016-7037(00)00628-1 Search in Google Scholar

[15] Brouwer H., Murphy T., 1995, Volatile sulfides and their toxicity in freshwater sediments, Envir. Toxicol. Chem., 14(2): 203–208, DOI: 10.1897/1552-8618(1995)14[203:VSATTI]2.0.CO;2 http://dx.doi.org/10.1002/etc.562014020410.1002/etc.5620140204 Search in Google Scholar

[16] Brüchert V., 1998, Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids, Geochim. et Cosmochim. Acta, 62(9): 1567–1586, DOI: 10.1016/S0016-7037(98)00089-1 http://dx.doi.org/10.1016/S0016-7037(98)00089-110.1016/S0016-7037(98)00089-1 Search in Google Scholar

[17] Brüchert V., Pratt L.M., 1996, Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA, Geochim. et Cosmochim. Acta, 60(13): 2325–2332, DOI: 10.1016/0016-7037(96)00087-7 http://dx.doi.org/10.1016/0016-7037(96)00087-710.1016/0016-7037(96)00087-7 Search in Google Scholar

[18] Brüchert V., Jørgensen B.B., Neumann K., Riechmann D., Schlösser M., Schulz H., 2003, Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone, Geochim. et Cosmochim. Acta, 67(23): 4505–4518, DOI: 10.1016/S0016-7037(03)00275-8 http://dx.doi.org/10.1016/S0016-7037(03)00275-810.1016/S0016-7037(03)00275-8 Search in Google Scholar

[19] Butler I.B., Böttcher M.E., Rickard D., Oldroyd A., 2004, Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: implications for the interpretation of sedimentary and hydrothermal pyrite isotope records, Earth Planet. Sci. Lett., 228(3–4): 495–509, DOI: 10.1016/j.epsl.2004.10.005 http://dx.doi.org/10.1016/j.epsl.2004.10.00510.1016/j.epsl.2004.10.005 Search in Google Scholar

[20] Canfield D.E., Jørgensen B.B., Fossing H., Glud R., Gundersen N.B. et al., 1993, Pathways of organic carbon oxidation in three continental margin sediments, Mar. Geol., 113(1–2): 27–40 http://dx.doi.org/10.1016/0025-3227(93)90147-N10.1016/0025-3227(93)90147-N Search in Google Scholar

[21] De Graaf W., Sinninghe Damsté J. S., De Leeuw J.W., 1992, Laboratory simulation of natural sulphurization: I. Formation of monomeric and oligomeric isoprenoid polysulphides by low-termperature reactions of inorganic polysulphides with phytol and phytadienes, Geochim. et Cosmochim. Acta, 56(12): 4321–4328, DOI: 10.1016/0016-7037(92)90275-N http://dx.doi.org/10.1016/0016-7037(92)90275-N10.1016/0016-7037(92)90275-N Search in Google Scholar

[22] Deming J.W., Baross J.A., 1993, The early diagenesis of organic matter: bacterial activity [in:] Organic geochemistry: Principles and Applications, Eds. M.H. Engel, S.A. Macko, New York, Plenum Press, pp. 119–144 http://dx.doi.org/10.1007/978-1-4615-2890-6_510.1007/978-1-4615-2890-6_5 Search in Google Scholar

[23] Derda M., 1999, Sulfur isotopes in nature. Determination of sulfur isotope ratios in coal and petroleum by gas combustion, INCT Reports Series B, 6(99), Warszawa, Institute of Nuclear Chemistry and Technology, pp. 20 (in Polish) Search in Google Scholar

[24] Di Toro D.M., Mahony J.D., Hansen D.J., Scott K.J., Hicks M.B. et al., 1990, Toxicity of cadmium in sediments: the role of acid-volatile sulfide, Environ. Toxicol. Chem., 9(12): 1487–1502, DOI: 10.1897/1552-8618(1990)9[1487:TOCIST]2.0.CO;2 http://dx.doi.org/10.1002/etc.562009120810.1002/etc.5620091208 Search in Google Scholar

[25] Donahue M.A., Werne J.P., Meile Ch., Lyons T., 2008, Modeling isotope fractionation and differential diffusion during sulfate reduction in sediments of the Cariaco Basin, Geochim. et Cosmochim. Acta, 72(9): 2287–2297, DOI: 10.1016/j.gca.2008.02.020 http://dx.doi.org/10.1016/j.gca.2008.02.02010.1016/j.gca.2008.02.020 Search in Google Scholar

[26] EPA, 1994, Chemicals in the environment: OPPT Chemical Fact Sheets: Carbonyl sulfide (CAS 463-58-1), http://www.epa.gov/chemfact/ Search in Google Scholar

[27] Falkowska L., Korzeniewski K., 1995, Chemia atmosfery, Gdańsk, The University of Gdańsk Press, pp. 193 (in Polish) Search in Google Scholar

[28] Ferek R.J., Andreae M.O., 1984, Photochemical production of carbonyl sulphide in marine surface waters, Nature, 307: 148–150, DOI: 10.1038/307148a0 http://dx.doi.org/10.1038/307148a010.1038/307148a0 Search in Google Scholar

[29] Fossing H., Gallardo V.A., Jørgensen B.B., Hüttel M., Nielsen L.P. et al., 1995, Concentration and transport of nitrate by the mat-forming sulphur bacterium Thioploca, Nature, 374: 713–715, DOI: 10.1038/374713a0 http://dx.doi.org/10.1038/374713a010.1038/374713a0 Search in Google Scholar

[30] Froelich P.N., Klinkhammer G.P., Bender M.L., Luedtke N.A., Heath G.R., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. et Cosmochim. Acta, 43(7): 1075–1090, DOI: 10.1016/0016-7037(79)90095-4 http://dx.doi.org/10.1016/0016-7037(79)90095-410.1016/0016-7037(79)90095-4 Search in Google Scholar

[31] Gagnon C., Mucci A., Pelletier E., 1996, Vertical distribution of dissolved sulphur species in coastal marine sediments, Mar. Chem., 52(3–4): 195–209, DOI: 10.1016/0304-4203(95)00099-2 http://dx.doi.org/10.1016/0304-4203(95)00099-210.1016/0304-4203(95)00099-2 Search in Google Scholar

[32] Gao Y., Schofield O.M.E., Leustek T., 2000, Characterization of sulfate assimilation in marine algae focusing on the enzyme 5′-adenylylsulfate reductase, J. Plant Physiol., 123: 1087–1096 http://dx.doi.org/10.1104/pp.123.3.108710.1104/pp.123.3.1087 Search in Google Scholar

[33] George J., Purushothaman C.S., Shouche Y.S., 2008, Isolation and characterization of sulphate-reducting bacteria Desulfovibrio vulgaris from Vajreshwari thermal springs in Maharashtra, India, World J. Microb. Biot., 24(5): 681–685, DOI: 10.1007/s11274-007-9524-2 http://dx.doi.org/10.1007/s11274-007-9524-210.1007/s11274-007-9524-2 Search in Google Scholar

[34] Grasby S.E., Allen C.C., Longazo T.G., Lisle J.T., Griffin D.W., Beauchamp B., 2003, Biogeochemical sulphur cycle in an extreme environment — life beneath a high arctic glacier, Nunavut, Canada, J. Geochem. Explor., 78–79: 71–74, DOI: 10.1016/S0375-6742(03)00026-8 http://dx.doi.org/10.1016/S0375-6742(03)00026-810.1016/S0375-6742(03)00026-8 Search in Google Scholar

[35] Holser W.T., Mackenzie F.T., Maynard J.B., Schidlowski M., 1988, Geochemical cycles of carbon and sulfur [in:] Chemical cycles in the evolution of the earth, Ed. Gregor C.B., New York, Wiley-Interscience, pp. 105–173 Search in Google Scholar

[36] Iverson R.L., Nearhoof F.L., Andreae M.O., 1989, Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters, Limnol. Oceanogr., 34: 53–67 http://dx.doi.org/10.4319/lo.1989.34.1.005310.4319/lo.1989.34.1.0053 Search in Google Scholar

[37] Janas U., 1998, Wpływ niedoboru tlenu i obecności siarkowodoru na makrozoobentos Zatoki Gdańskiej, PhD thesis, University of Gdańsk, Gdynia, pp. 155 (in Polish) Search in Google Scholar

[38] Jørgensen B.B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr., 22(5): 814–832 http://dx.doi.org/10.4319/lo.1977.22.5.081410.4319/lo.1977.22.5.0814 Search in Google Scholar

[39] Jørgensen B.B., 1982, Mineralization of organic matter in the sea bed — the role of sulphate reduction, Nature, 296: 643–645, DOI: 10.1038/296643a0 http://dx.doi.org/10.1038/296643a010.1038/296643a0 Search in Google Scholar

[40] Kamyshny A., Goifman A., Rizkov D., Lev O., 2003, Formation of carbonyl sulfide by the reaction of carbon monoxide and inorganic polysulfides, Environ. Sci. Techol., 37(9): 1865–1872, DOI: 10.1021/es0201911 http://dx.doi.org/10.1021/es020191110.1021/es020191112775059 Search in Google Scholar

[41] Keith S.M., Herbert R.A., Harfoot C.G., 1982, Isolation of new types of sulphate-reducing bacteria from estuarine and marine sediments using chemostat enrichments, J. Appl. Microbiol., 53: 29–33, DOI: 10.1111/j.1365-2672.1982.tb04731.x http://dx.doi.org/10.1111/j.1365-2672.1982.tb04731.x10.1111/j.1365-2672.1982.tb04731.x Search in Google Scholar

[42] Kettle, A.J., Andreae M.O., Amouroux D., Andreae T.W., Bates T.S. et. al., 1999, A global data base of sea surface dimethyl sulfide (DMS) measurements and a simple model to predict sea surface DMS as a function of latitude, longitude, and month, Global Biogeochem. Cy. 13(2): 399–444, DOI: 10.1029/1999GB900004 http://dx.doi.org/10.1029/1999GB90000410.1029/1999GB900004 Search in Google Scholar

[43] Kholodov V.N., 2002, The role of H 2S — contaminated basins in sedimentary ore formation, Limnology and Mineral Resources, 37(5): 393–411, DOI: 10.1023/A:1020251314915 http://dx.doi.org/10.1023/A:102025131491510.1023/A:1020251314915 Search in Google Scholar

[44] Kohnen M.E.L., Jaap S., Damsté S.S., Kock-Van Dalen A.C., De Leeuw J.W., 1991, Di- or polysulphide — bound biomarkers in sulphur — rich geomacromolecules as revealed by selective chemolysis, Geochim. et Cosmochim. Acta, 55(5): 1375–1394, DOI: 10.1016/0016-7037(91)90315-V http://dx.doi.org/10.1016/0016-7037(91)90315-V10.1016/0016-7037(91)90315-V Search in Google Scholar

[45] Korzeniewski K., 1995, Podstawy oceanografii chemicznej, Gdańsk, University of Gdańsk Press, pp. 200 (in Polish) Search in Google Scholar

[46] Kuenen J.G., 1975, Colourless sulfur bacteria and their role in the sulfur cycle, Plant Soil, 43(1–3): 49–76, DOI: 10.1007/BF01928476 http://dx.doi.org/10.1007/BF0192847610.1007/BF01928476 Search in Google Scholar

[47] Levine, J. S., 1989, Photochemistry of biogenic gases [in:] Global Ecology: Towards a Science of the Biosphere, Eds. Rambler M.B., Margulis L., Fester L.R., London, Academic Press, pp. 51–74 Search in Google Scholar

[48] Lin S., Huang K.-M., Chen S.-K., 2000, Organic carbon deposition and its control on iron sulfide formation of the southern East China Sea continental shelf sediments, Cont. Shelf Res., 20(4–5): 619–635, DOI:10.1016/S0278-4343(99)00088-6 http://dx.doi.org/10.1016/S0278-4343(99)00088-610.1016/S0278-4343(99)00088-6 Search in Google Scholar

[49] Lin S., Huang K.-M., Chen S.-K., 2002, Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment, Deep Sea Res. Part I, 49(10): 1837–1852, DOI: 10.1016/S0967-0637(02)00092-4 http://dx.doi.org/10.1016/S0967-0637(02)00092-410.1016/S0967-0637(02)00092-4 Search in Google Scholar

[50] Lojen S., Ogrinc N., Dolenec T., Vokal B., Szran J. et al., 2004, Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia), Sci. Tot. Environ., 327(1–3): 265–284, DOI: 10.1016/j.scitotenv.2004.01.011 http://dx.doi.org/10.1016/j.scitotenv.2004.01.01110.1016/j.scitotenv.2004.01.011 Search in Google Scholar

[51] Lyons T.W., Werne J.P., Hollander D.J., Murray R.W., 2003, Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela, Chem. Geol., 195(1–4): 131–157, DOI:10.1016/S0009-2541(02)00392-3 http://dx.doi.org/10.1016/S0009-2541(02)00392-310.1016/S0009-2541(02)00392-3 Search in Google Scholar

[52] Malin G., 2006, New pieces for the marine sulfur cycle jigsaw, Science, 314(5799): 607–608, DOI: 10.1126/science.1133279 http://dx.doi.org/10.1126/science.113327910.1126/science.1133279 Search in Google Scholar

[53] McKay J.L., Longstaffe F.J., 2003, Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin, Sediment. Geol. 157(3–4): 175–195, DOI: 10.1016/S0037-0738(02)00233-6 http://dx.doi.org/10.1016/S0037-0738(02)00233-610.1016/S0037-0738(02)00233-6 Search in Google Scholar

[54] Migdisov A.A., Ronov A.B., Grinenko V.A., 1983, The sulphur cycle in the lithosphere: Part 1. Reservois [in:] The global geochemical sulphur cycle, Eds. Ivanow M.V., Freney J.R., New York, Wiley, pp. 25–95 Search in Google Scholar

[55] Mudryk Z.J., Podgórska B., Ameryk A., Bola’ek J., 2000, The occurrence and activity of sulphate-reducing bacteria in the bottom sediments of the Gulf of Gdańsk, Oceanologia, 42(1): 105–117 Search in Google Scholar

[56] Neumann T., Rausch N., Leipe T., Dellwig O., Berner Z., Böttcher M.E., 2005, Intense pyrite formation under low-sulfate conditions in the Achterwasser lagoon, SW Baltic Sea, Geochim. et Cosmochim. Acta, 69(14): 3619–3630, DOI: 10.1016/j.gca.2005.02.034 http://dx.doi.org/10.1016/j.gca.2005.02.03410.1016/j.gca.2005.02.034 Search in Google Scholar

[57] Norris, K.B., 2003. Dimethylsulfide emission: Climate control by marine algae?, Aquatic Sciences and Fisheries Abstracts, http://www.csa.com/discoveryguides/dimethyl/overview.php Search in Google Scholar

[58] Nyström M., Ruohomäki K., Kaipia L., 1996, Humic acid as a fouling agent in filtration, Desalination, 106(1–3): 79–87, DOI: 10.1016/S0011-9164(96)00095-1 10.1016/S0011-9164(96)00095-1 Search in Google Scholar

[59] Ober J.A., 2010, Sulfur(Advance Release) [in:] Minerals Yearbook 2008: Vol.1 Metals & Minerals, US Geological Survey, 74: 1–17, http://minerals.usgs.gov/ Search in Google Scholar

[60] Parkes R. J., Gibson G.R., Mueller-Harvey I., Buckingham W. J., Herbert R.A., 1989, Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction, J. Gen. Microbiol., 135: 175–187, DOI: 10.1099/00221287-135-1-175 10.1099/00221287-135-1-175 Search in Google Scholar

[61] Pempkowiak J., 1997, Zarys geochemii morskiej, Gdańsk, University of Gdańsk Press, pp. 171 (in Polish) Search in Google Scholar

[62] Pham M., Müller J.-F., Brasseur G.P., Granier C., Mégie G., 1996, A 3D model study of the global sulphur cycle: contributions of anthropogenic and biogenic sources, Atmos. Environ. 30(10–11): 1815–1822, DOI: 10.1016/1352-2310(95)00390-8 http://dx.doi.org/10.1016/1352-2310(95)00390-810.1016/1352-2310(95)00390-8 Search in Google Scholar

[63] Pronk J.T., Liem K., Bos P., Kuenen J.G., 1991, Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans, Appl. Environ. Microbiol. 57(7): 2063–2068 10.1128/aem.57.7.2063-2068.1991 Search in Google Scholar

[64] Rickard, D., 1997, Kinetics of pyrite formation by the H 2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation, Geochim. et Cosmochim. Acta, 61(1): 115–134, DOI:10.1016/S00167037(96) 00321-3 http://dx.doi.org/10.1016/S0016-7037(96)00321-310.1016/S0016-7037(96)00321-3 Search in Google Scholar

[65] Rickard D., Morse J.W., 2005, Acid volatile sulfide (AVS), Marine Chemistry 97(3–4): 141–197, DOI: 10.1016/j.marchem.2005.08.004 http://dx.doi.org/10.1016/j.marchem.2005.08.00410.1016/j.marchem.2005.08.004 Search in Google Scholar

[66] Schenau S.J., Passier H.F., Reichart G.J., De Lange G.J., 2002, Sedimentary pyrite formation in the Arabian Sea, Mar. Geol., 185(3–4): 393–402 http://dx.doi.org/10.1016/S0025-3227(02)00183-410.1016/S0025-3227(02)00183-4 Search in Google Scholar

[67] Schippers A., Jørgensen B.B., 2002, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. et Cosmochim. Acta, 66(1): 85–92, DOI: 10.1016/S0016-7037(01)00745-1 http://dx.doi.org/10.1016/S0016-7037(01)00745-110.1016/S0016-7037(01)00745-1 Search in Google Scholar

[68] Schlegel H.G., 2003, Mikrobiologia ogólna, Warszawa, Polish Scientific Publishers PWN, pp. 735 (in Polish) Search in Google Scholar

[69] SCOPE, 1993, Effects of increased ultraviolet radiation on global ecosystems: proceedings of a workshop arranged by the Scientific Committee on Problems of the Environment (SCOPE) with the financial support of the CEC, UNEP, US EPA, the Barbara Gauntlett Foundation, and the US NSF: a research implementation plan addressing the impacts of increased UV-B radiation due to stratospheric ozone depletion on global ecosystems, Tramariglio, (Sassari) Sardinia, Paris, SCOPE, pp. 47 Search in Google Scholar

[70] Sievert S.M., Kiene R.P., Schulz-Vogt H.N., 2007, The sulfur cycle, Oceanography, 20: 117–123 http://dx.doi.org/10.5670/oceanog.2007.5510.5670/oceanog.2007.55 Search in Google Scholar

[71] Suits N.S., Arthur M.A., 2000, Sulfur diagenesis and partitioning in Holocene Peru shelf and upper slope sediments, Chem. Geol., 163: 219–234, DOI: 10.1016/S0009-2541(99)00114-X http://dx.doi.org/10.1016/S0009-2541(99)00114-X10.1016/S0009-2541(99)00114-X Search in Google Scholar

[72] Šukytė V.J., Rinkevičienė E., Zelionkaitė V., 2002, The chemistry of sulfur in anoxic zones of the Baltic Sea, Environmental Research, Engineering and Management, 3(21): 55–60 Search in Google Scholar

[73] Thamdrup B., Fossing H., Jørgensen B.B., 1994, Manganese, iron and sulfur cycling in a coastal marine sediment (Aarhus Bay, Denmark), Geochim. et Cosmochim. Acta, 58(23): 5115–5129, DOI: 10.1016/0016-7037(94)90298-4 http://dx.doi.org/10.1016/0016-7037(94)90298-410.1016/0016-7037(94)90298-4 Search in Google Scholar

[74] Uher G., 2006, Distribution and air — sea exchange of reduced sulphur gases in European coastal waters, Estuarine Coastal Shelf Sci., 70(3): 338–360, DOI: 10.1016/j.ecss.2006.05.050 http://dx.doi.org/10.1016/j.ecss.2006.05.05010.1016/j.ecss.2006.05.050 Search in Google Scholar

[75] Uher G., Andreae M.O., 1997, Photochemical production of carbonyl sulfide in North Sea water: A process study, Limnol. Oceanogr., 42(3): 432–442 http://dx.doi.org/10.4319/lo.1997.42.3.043210.4319/lo.1997.42.3.0432 Search in Google Scholar

[76] Ulshöfer V.S., Andreae M.O., 1997, Carbonyl sulfide (COS) in the surface ocean and the atmospheric COS budget, Aquat. Geochem., 3(4): 283–303, DOI: 10.1023/A:1009668400667 http://dx.doi.org/10.1023/A:100966840066710.1023/A:1009668400667 Search in Google Scholar

[77] Walker J.C., 1986, Global geochemical cycles of carbon, sulfur and oxygen, Mar. Geol., 70: 159–174, DOI: 10.1016/0025-3227(86)90093-9 http://dx.doi.org/10.1016/0025-3227(86)90093-910.1016/0025-3227(86)90093-9 Search in Google Scholar

[78] Weiner J., 2003, Życie i ewolucja biosfery, Warszawa, Polish Scientific Publishers PWN, pp. 609 (in Polish) Search in Google Scholar

[79] Wijsman J.W.M., Middelburg J.J., Herman P.M.J., Böttcher M.E., Heip C.H.R., 2001, Sulfur and iron speciation in surface sediments along the northwestern margin of the Black Sea, Mar. Chem., 74(4): 261–278, DOI: 10.1016/S0304-4203(01)00019-6 http://dx.doi.org/10.1016/S0304-4203(01)00019-610.1016/S0304-4203(01)00019-6 Search in Google Scholar

[80] Wilkin, R.T., Barnes, H.L., Brantley, S.L., 1996, The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. et Cosmochim. Acta, 60(20): 3897–3912, DOI: 10.1016/0016-7037(96)00209-8 http://dx.doi.org/10.1016/0016-7037(96)00209-810.1016/0016-7037(96)00209-8 Search in Google Scholar

[81] Vismann B., 1996, Sulfide species and total sulfide toxicity in the shrimp Crangon crangon, J. Exp. Mar. Biol. Ecol., 204(1–2): 141–154, DOI: 10.1016/0022-0981(96)02577-4 http://dx.doi.org/10.1016/0022-0981(96)02577-410.1016/0022-0981(96)02577-4 Search in Google Scholar

[82] Zago C., Giblin A.E., 1994, Analysis of acid volatile sulfide and metals to predict the toxicity of Boston Harbor sediments, The Biological Bulletin, 187: 290–291 10.1086/BBLv187n2p29029281374 Search in Google Scholar

eISSN:
1897-3191
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Chemistry, other, Geosciences, Life Sciences