1. bookVolumen 41 (2014): Edición 2 (June 2014)
Detalles de la revista
License
Formato
Revista
eISSN
1897-1695
Primera edición
04 Jul 2007
Calendario de la edición
1 tiempo por año
Idiomas
Inglés
Acceso abierto

Kinetic analysis of thermoluminescence glow curves in feldspar: evidence for a continuous distribution of energies

Publicado en línea: 20 Mar 2014
Volumen & Edición: Volumen 41 (2014) - Edición 2 (June 2014)
Páginas: 168 - 177
Detalles de la revista
License
Formato
Revista
eISSN
1897-1695
Primera edición
04 Jul 2007
Calendario de la edición
1 tiempo por año
Idiomas
Inglés

[1] Andersen MT, Jain M and Tidemand-Lichtenberg P, 2012. Red-IR stimulated luminescence in K-feldspar: single or multiple trap origin? Journal of Applied Physics 112: 043507, DOI 10.1063/1.4745018. http://dx.doi.org/10.1063/1.474501810.1063/1.4745018Search in Google Scholar

[2] Baril MR and Huntley DJ, 2003. Optical excitation spectra of trapped electrons in irradiated feldspars. Journal of Physics: Condensed Matter 15: 8011–8027, DOI 10.1088/0953-8984/15/46/017. 10.1088/0953-8984/15/46/017Search in Google Scholar

[3] Bøtter-Jensen L, Ditlefsen C and Mejdahl, V, 1991. Combined OSL (infrared) and TL studies of feldspars. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18(1–2): 257–263, DOI 10.1016/1359-0189(91)90120-7. http://dx.doi.org/10.1016/1359-0189(91)90120-710.1016/1359-0189(91)90120-7Search in Google Scholar

[4] Bøtter-Jensen L, McKeever SWS and Wintle A, 2003. Optically Stimulated Luminescence Dosimetry. Elsevier, Amsterdam. 10.1016/B978-044450684-9/50091-XSearch in Google Scholar

[5] Chen R and Pagonis V, 2011. Thermally and Optically Stimulated Luminescence: A Simulation Approach. Chichester: Wiley and Sons. http://dx.doi.org/10.1002/978111999376610.1002/9781119993766Search in Google Scholar

[6] Chruścińska A, 2001. The fractional glow technique as a tool of investigation of TL bleaching efficiency in K-feldspar. Geochronometria 20: 21–30. Search in Google Scholar

[7] Chruścińska A, Oczkowski HL and Przegiętka KR, 2001. The parameters of traps in K-feldspars and the TL bleaching efficiency: Geochronometria 20: 15–20. Search in Google Scholar

[8] Clark RJ and Sanderson DCW, 1994. Photostimulated luminescence excitation spectroscopy of feldspars and Micas. Radiation Measurements 23(2–3): 641–646, DOI 10.1016/1350-4487(94)90113-9. http://dx.doi.org/10.1016/1350-4487(94)90113-910.1016/1350-4487(94)90113-9Search in Google Scholar

[9] Duller GAT, 1995. Infrared bleaching of the thermoluminescence of four feldspars. Journal of Physics D: Applied Physics 28(6): 1244–1258, DOI 10.1088/0022-3727/28/6/030. http://dx.doi.org/10.1088/0022-3727/28/6/03010.1088/0022-3727/28/6/030Search in Google Scholar

[10] Guérin G, 2006. Some aspects of phenomenology and kinetics of high temperature thermoluminescence of plagioclase feldspars. Radiation Measurements 41(7–8): 936–941, DOI 10.1016/j.radmeas.2006.04.004. http://dx.doi.org/10.1016/j.radmeas.2006.04.00410.1016/j.radmeas.2006.04.004Search in Google Scholar

[11] Grün R and Packman SC, 1994. Observations on the kinetics involved in the TL glow curves in quartz, K-feldspar and Na-feldspar mineral separates of sediments and their significance for dating studies. Radiation Measurements 23(2–3): 317–322, DOI 10.1016/1350-4487(94)90058-2. http://dx.doi.org/10.1016/1350-4487(94)90058-210.1016/1350-4487(94)90058-2Search in Google Scholar

[12] Hornyak WF, Chen R and Franklin A, 1992. Thermoluminescence characteristics of the 375°C electron trap in quartz. Physical Review B 46(13): 8036–8049, DOI 10.1103/PhysRevB.46.8036. http://dx.doi.org/10.1103/PhysRevB.46.803610.1103/PhysRevB.46.8036Search in Google Scholar

[13] Huntley DJ and Lamothe M, 2001. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science 38(7): 1093–1106, DOI 10.1139/e01-013. http://dx.doi.org/10.1139/e01-01310.1139/e01-013Search in Google Scholar

[14] Huntley DJ and Lian OB, 2006. Some observations on tunnelling of trapped electrons in feldspars and their implications for optical dating. Quaternary Science Reviews 25(19–20): 2503–2512, DOI 10.1016/j.quascirev.2005.05.011. http://dx.doi.org/10.1016/j.quascirev.2005.05.01110.1016/j.quascirev.2005.05.011Search in Google Scholar

[15] Jain M and Ankjærgaard C, 2011. Towards a non-fading signal in feldspar: Insight into charge transport and tunnelling from time-resolved optically stimulated luminescence. Radiation Measure-ments 46(3): 292–309, DOI 10.1016/j.radmeas.2010.12.004. http://dx.doi.org/10.1016/j.radmeas.2010.12.00410.1016/j.radmeas.2010.12.004Search in Google Scholar

[16] Jain M, Guralnik B and Andersen MT, 2012. Stimulated luminescence emission from localized recombination in randomly distributed defects. Journal of Physics: Condensed Matter 24: 385402, DOI 10.1088/0953-8984/24/38/385402. 10.1088/0953-8984/24/38/385402Search in Google Scholar

[17] Kars RH, Poolton NRJ, Jain M, Ankjærgaard C, Dorenbos P and Wallinga J, 2013. On the trap depth of the IR-sensitive trap in Na- and K-feldspar. Radiation Measurements 59: 103–113, DOI 10.1016/j.radmeas.2013.05.002. http://dx.doi.org/10.1016/j.radmeas.2013.05.00210.1016/j.radmeas.2013.05.002Search in Google Scholar

[18] Kitis G, Gomez-Ros JM and Tuyn JWN, 1998. Thermoluminescence glow-curve deconvolution functions for first, second and general orders of kinetics. Journal of Physics D: Applied Physics 31: 2636, DOI 10.1088/0022-3727/31/19/037. http://dx.doi.org/10.1088/0022-3727/31/19/03710.1088/0022-3727/31/19/037Search in Google Scholar

[19] Kitis G and Pagonis V, 2013. Analytical solutions for stimulated luminescence emission from tunneling recombination in random distributions of defects. Journal of Luminescence 137: 109–115, DOI 10.1016/j.jlumin.2012.12.042. http://dx.doi.org/10.1016/j.jlumin.2012.12.04210.1016/j.jlumin.2012.12.042Search in Google Scholar

[20] Li S-H, Tso MYW and Wong NW, 1997. Parameters of OSL traps determined with various heating rates. Radiation Measurements 27(1): 43–47, DOI 10.1016/S1350-4487(96)00137-0. http://dx.doi.org/10.1016/S1350-4487(96)00137-010.1016/S1350-4487(96)00137-0Search in Google Scholar

[21] Li B and Li S-H, 2013. The effect of band-tail states on the thermal stability of the infrared stimulated luminescence from K-feldspar. Journal of Luminescence 136: 5–10, DOI 10.1016/j.jlumin.2012.08.043. http://dx.doi.org/10.1016/j.jlumin.2012.08.04310.1016/j.jlumin.2012.08.043Search in Google Scholar

[22] Morthekai P, Thomas J, Padian MS, Balaram V and Singhvi AK, 2012. Variable range hopping mechanism in band-tail states of feldspars: A time-resolved IRSL study. Radiation Measurements 47(9): 857–863, DOI 10.1016/j.radmeas.2012.03.007. http://dx.doi.org/10.1016/j.radmeas.2012.03.00710.1016/j.radmeas.2012.03.007Search in Google Scholar

[23] Murray AS, Buylaert JP, Thomsen KJ and Jain M, 2009. The effect of preheating on the IRSL signal from feldspar. Radiation Measurements 44(5–6): 554–559, DOI 10.1016/j.radmeas.2009.02.004. http://dx.doi.org/10.1016/j.radmeas.2009.02.00410.1016/j.radmeas.2009.02.004Search in Google Scholar

[24] Pagonis V, Morthekai P, Singhvi AK, Thomas J, Balaram V, Kitis G and Chen R, 2012. Time-resolved infrared stimulated luminescence signals in feldspars: Analysis based on exponential and stretched exponential functions. Journal of Luminescence 132(9): 2330–2340, DOI 10.1016/j.jlumin.2012.04.020. http://dx.doi.org/10.1016/j.jlumin.2012.04.02010.1016/j.jlumin.2012.04.020Search in Google Scholar

[25] Panzeri L, Martini M and Sibilia E, 2012. Effects of thermal treatments on luminescence features of three natural feldspars. Radiation Measurements 47(9): 877–882, DOI 10.1016/j.radmeas.2012.03.021. http://dx.doi.org/10.1016/j.radmeas.2012.03.02110.1016/j.radmeas.2012.03.021Search in Google Scholar

[26] Poolton NRJ, Bøtter-Jensen L and Johnsen O, 1995. Thermo-optical properties of optically stimulated luminescence in feldspars. Radiation Measurements 24(4): 531–534, DOI 10.1016/1350-4487(94)00114-G. http://dx.doi.org/10.1016/1350-4487(94)00114-G10.1016/1350-4487(94)00114-GSearch in Google Scholar

[27] Poolton NRJ, Ozanyan KB, Wallinga J, Murray AS and Bøtter-Jensen L, 2002a. Electrons in feldspar II: a consideration of the influence of conduction band-tail states on luminescence processes. Physics and Chemistry of Minerals 29(3): 217–225, DOI 10.1007/s00269-001-0218-2. http://dx.doi.org/10.1007/s00269-001-0218-210.1007/s00269-001-0218-2Search in Google Scholar

[28] Poolton NRJ, Wallinga J, Murray AS, Bulur E and Bøtter-Jensen L, 2002b. Electrons in feldspar I: on the wave function of electrons trapped at simple lattice defects. Physics and Chemistry of Minerals 29(3): 210–216, DOI 10.1007/s00269-001-0217-3. http://dx.doi.org/10.1007/s00269-001-0217-310.1007/s00269-001-0217-3Search in Google Scholar

[29] Poolton NRJ, Kars RH, Wallinga J and Bos AJJ, 2009. Direct evidence for the participation of band-tails and excited-state tunnelling in the luminescence of irradiated feldspars. Journal of Physics: Condensed Matter 21: 485505, DOI 10.1088/0953-8984/21/48/485505. 10.1088/0953-8984/21/48/485505Search in Google Scholar

[30] Strickertsson K, 1985. The thermoluminescence of potassium feldspars — Glow curve characteristics and initial rise measurements. Nuclear Tracks and Radiation Measurements 10(4–6): 613–617, DOI 10.1016/0735-245X(85)90066-3. http://dx.doi.org/10.1016/0735-245X(85)90066-310.1016/0735-245X(85)90066-3Search in Google Scholar

[31] Visocekas R, 1985. Tunneling radiative recombination in labradorite: its association with anomalous fading of thermoluminscence. Nuclear Tracks and Radiation Measurements 10(4–6): 521–529, DOI 10.1016/0735-245X(85)90053-5. http://dx.doi.org/10.1016/0735-245X(85)90053-510.1016/0735-245X(85)90053-5Search in Google Scholar

[32] Visocekas R, Tale V, Zink A, Spooner NA and Tale I, 1996. Trap Spectroscopy and TSL in Feldspars. Radiation Protection Dosimetry 66: 391–394. http://dx.doi.org/10.1093/oxfordjournals.rpd.a03176110.1093/oxfordjournals.rpd.a031761Search in Google Scholar

[33] Visocekas R and Guérin G, 2006. TL dating of feldspars using their far-red emission to deal with anomalous fading. Radiation Meas-urements 41(7–8): 942–947, DOI 10.1016/j.radmeas.2006.04.023. http://dx.doi.org/10.1016/j.radmeas.2006.04.02310.1016/j.radmeas.2006.04.023Search in Google Scholar

[34] Wintle AG, 1977. Detailed study of a thermoluminescent mineral exhibiting anomalous fading. Journal of Luminescence 15(4): 385–393, DOI 10.1016/0022-2313(77)90037-0. http://dx.doi.org/10.1016/0022-2313(77)90037-010.1016/0022-2313(77)90037-0Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo