Acceso abierto

The E1’ center in natural quartz: Its formation and applications to dating and provenance researches

   | 19 jun 2011
Geochronometria's Cover Image
Geochronometria
Special Issue Title: Proceedings of the 2nd Asia Pacific Conference on Luminescence Dating, Ahmedabad, India, 2009. Part II Issue Editors: Andrzej Bluszcz, Silesian University of Technology, Gliwice, Poland. Andrzej.Bluszcz@polsl.pl Sheng-Hua Li, The University of Hong Kong, Hong Kong, China. shli@hku.hk Ashok Kumar Singhvi, Physical Research Laboratory, Ahmedabad, India. singhvi@prl.res.in

Cite

[1] Clayton RN, Rex RW, Syers JK and Jackson ML, 1972. Oxygen isotope abundance in quartz from Pacific pelagic sediments. Journal of Geophysical Research 77(21): 3907–3915, DOI 10.1029/JC077i021p03907. http://dx.doi.org/10.1029/JC077i021p0390710.1029/JC077i021p03907Search in Google Scholar

[2] Feigl FJ, Fowler WB and Yip KL, 1974. Oxygen vacancy model for the E1′ centre in SiO2. Solid State Communications 14(3): 225–229, DOI 10.1016/0038-1098(74)90840-0. http://dx.doi.org/10.1016/0038-1098(74)90840-010.1016/0038-1098(74)90840-0Search in Google Scholar

[3] Grün R, 1989. ESR dating for the early Earth. Nature 338(6216): 543–544, DOI 10.1038/338543a0. http://dx.doi.org/10.1038/338543a010.1038/338543a0Search in Google Scholar

[4] Hashimoto T, Koyanagi A, Yokosaka K, and Sotobayashi Y, 1986. Thermoluminescence color images from quartz of beach sands. Geochemical Journal 20(3): 111–118. 10.2343/geochemj.20.111Search in Google Scholar

[5] Hashimoto T, Fujita, H and Hase H, 2001. Effects of atomic hydrogen and annealing temperatures on some radiation-induced phenomena in differently originated quartz. Radiation Measurements 33(4): 431–437, DOI 10.1016/S1350-4487(00)00140-2. http://dx.doi.org/10.1016/S1350-4487(00)00140-210.1016/S1350-4487(00)00140-2Search in Google Scholar

[6] Ikeya M, 1993. New applications of electron spin resonance, dating, dosimetry, and microscopy. World Scientific, Singapore: 500pp. 10.1142/1854Search in Google Scholar

[7] Ikeya M and Ishii H, 1989. Atomic Bomb and accident dosimetry with ESR: natural rocks and human tooth In-vivo spectrometer. Applied Radiation and Isotopes 40(10–12): 1021–1027, DOI 10.1016/0883-2889(89)90035-X. 10.1016/0883-2889(89)90035-XSearch in Google Scholar

[8] Ikeya M, Miki T and Tanaka K, 1982. Dating of fault by electron spin resonance on intrafault materials. Science 215(4538): 1392–1393, DOI 10.1126/science.215.4538.1392. http://dx.doi.org/10.1126/science.215.4538.139210.1126/science.215.4538.139217753018Search in Google Scholar

[9] Isozaki Y, 2009. Characterization of eolian dust and its sources in the Tarim Basin and their temporal changes during Plio-Pleistocene based on the ESR signal intensity and Crystallinity Index of quartz. PhD Thesis, University of Tokyo: 225pp. Search in Google Scholar

[10] Jackson, ML, Levelt TWM, Syers JK, Rex RW, Clayton RN, Sherman GD and Uehara G, 1971. Geomorphological relationships of tropospherically-derived quartz in soils of the Hawaiin Islands. Proceedings — Soil Science Society of America 35, 515–525. http://dx.doi.org/10.2136/sssaj1971.03615995003500040015x10.2136/sssaj1971.03615995003500040015xSearch in Google Scholar

[11] Jani MG, Bossoli RB and Halliburton LE, 1983. Further characterization of the E1′ center in crystalline SiO2. Physical Review B 27: 2285–2293. http://dx.doi.org/10.1103/PhysRevB.27.228510.1103/PhysRevB.27.2285Search in Google Scholar

[12] Kita I, Taguchi S and Matsubaya O, 1985. Oxygen isotope fractionation between amorphous silica and water at 34–93°C. Nature 314(6006): 83–84, DOI 10.1038/314083a0. http://dx.doi.org/10.1038/314083a010.1038/314083a0Search in Google Scholar

[13] Lee H-K and Schwarcz HP, 1994. Criteria for complete zeroing of ESR signals during faulting of the San Gabriel fault zone, southern California. Tectonophysics 235(4): 317–337, DOI10.1016/0040-1951(94)90192-9. http://dx.doi.org/10.1016/0040-1951(94)90192-910.1016/0040-1951(94)90192-9Search in Google Scholar

[14] Lee H-K and Yanga J-S, 2007. ESR dating of the Eupchon fault, South Korea. Quaternary Geochronology 2(1–4): 392–397, DOI 10.1016/j.quageo.2006.04.009. http://dx.doi.org/10.1016/j.quageo.2006.04.00910.1016/j.quageo.2006.04.009Search in Google Scholar

[15] Mizota T and Inoue K, 1988. Oxygen isotope composition of eolian quartz in soils and sediments — its significance as a tracer of eolian components. Nengo Kagaku 28: 38–54 (in Japanese with English abstract). Search in Google Scholar

[16] Mizota C, Faure K and Yamamoto M, 1996. Provenance of quartz in sedimentary mantles and laterites overlying bedrock in West Africa: evidence from oxygen isotopes. Geoderma 72(1–2): 65–74, DOI 10.1016/0016-7061(96)00014-6. http://dx.doi.org/10.1016/0016-7061(96)00014-610.1016/0016-7061(96)00014-6Search in Google Scholar

[17] Nagashima K, Tada R, Tani A, Toyoda S, Sun Y and Isozaki Y, 2007a. Contribution of Aeolian dust in Japan Sea sediments estimated from ESR signal intensity and crystallinity of quartz. Geochemistry, Geophysics, Geosystems 8: Q02Q04, DOI 10.1029/2006GC001364. http://dx.doi.org/10.1029/2006GC00136410.1029/2006GC001364Search in Google Scholar

[18] Nagashima K, Tada R, Matsui H, Irino T, Tani A and Toyoda S, 2007b. Orbital- and Millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 247(1–2): 144–161, DOI 10.1016/j.palaeo.2006.11.027. http://dx.doi.org/10.1016/j.palaeo.2006.11.02710.1016/j.palaeo.2006.11.027Search in Google Scholar

[19] Naruse T, Ono Y, Hirakawa K, Okashita M and Ikeya M, 1997. Source areas of eolian dust quartz in East Asia: a tentative reconstruction of prevailing winds in Isotope Stage 2 using electron spin resonance. Geographical Review of Japan 70A-1: 15–27 (in Japanese with English abstract). 10.4157/grj1984a.70.1_15Search in Google Scholar

[20] Odom AL and Rink WJ, 1989. Natural accumulation of Shottky-Frenkel defects: implications for a quartz geochronometer. Geology 17(1): 55–58, DOI 10.1130/0091-7613 (1988)017<0055:NAOSFD>2.3.CO;2. http://dx.doi.org/10.1130/0091-7613(1988)017<0055:NAOSFD>2.3.CO;210.1130/0091-7613(1988)017<0055:NAOSFD>2.3.CO;2Search in Google Scholar

[21] Ono Y, Naruse T, Ikeya M, Kohno H and Toyoda S, 1998. Origin and derived courses of eolian dust quartz deposited during marine isotope stage 2 in East Asia, suggested by ESR signal intensity. Global and Planetary Change 18(3–4): 129–135, DOI 10.1016/S0921-8181(98)00012-5. http://dx.doi.org/10.1016/S0921-8181(98)00012-510.1016/S0921-8181(98)00012-5Search in Google Scholar

[22] Palmer SE, Kyser TK and Hiatt EE, 2004. Provenance of the Proterozoic Thelon Basin, Nunavut, Canada, from detrital zircon geochronology and detrital quartz oxygen isotopes. Precambiran Research 129(1–2): 115–140, DOI 10.1016/j.precamres.2003.10.010. http://dx.doi.org/10.1016/j.precamres.2003.10.01010.1016/j.precamres.2003.10.010Search in Google Scholar

[23] Porat N, Schwarcz HP, Valladas H, Bar-Yosef O and Vandermeersch B, 1994. Electron spin resonance dating of burned flint from Kebara cave, Israel. Geoarchaeology 9(5): 393–407, DOI 10.1002/gea.3340090504. http://dx.doi.org/10.1002/gea.334009050410.1002/gea.3340090504Search in Google Scholar

[24] Rink WJ and Odom AL, 1991. Natural alpha recoil particle radiation and ionizing radiation sensitivities in quartz detected with EPR: implication for geochronometery. Nuclear Tracks and Radiation Measurements 18(1–2): 163–173, DOI 10.1016/1359-0189(91)90108-T. 10.1016/1359-0189(91)90108-TSearch in Google Scholar

[25] Rudra JK and Fowler WB, 1987. Oxygen vacancy and the E1′ center in crystalline SiO2. Physical Review B 35(15): 8223–8230, DOI 10.1103/PhysRevB.35.8223. http://dx.doi.org/10.1103/PhysRevB.35.822310.1103/PhysRevB.35.8223Search in Google Scholar

[26] Shimada A, 2008. Characteristics of ESR signals and thermoluminescence color images of quartz grains to study the provenance of sediments. Ph. D. Thesis, Nara Wemen’s University, Japan: 153pp (in Japanese). Search in Google Scholar

[27] Shimoyama Y, 1986. ESR dating of volcanic rocks. Abstract for the First Workshop on ESR Applied Metrology, 47–48, IONICS, Tokyo (in Japanese). Search in Google Scholar

[28] Silsbee RH, 1961. Electron spin resonance in neutron-irradiated quartz. Journal of Applied Physics 32(8): 1459–1462, DOI 10.1063/1.1728379. http://dx.doi.org/10.1063/1.172837910.1063/1.1728379Search in Google Scholar

[29] Toyoda S, 1992. Production and decay characteristics of Paramagnetic defects in quartz: application to ESR dating. Ph. D. Thesis, Osaka University, Japan: 106pp. Search in Google Scholar

[30] Toyoda S and Hattori M, 2000. Formation and decay of the E1′ center and of its precursor. Applied Radiation and Isotopes 52(5): 1351–1356, DOI 10.1016/S0969-8043(00)00094-4. http://dx.doi.org/10.1016/S0969-8043(00)00094-410.1016/S0969-8043(00)00094-4Search in Google Scholar

[31] Toyoda S and Ikeya M, 1991. Thermal stabilities of paramagnetic defect and impurity centers in quartz: basis for ESR dating of thermal history. Geochemical Journal 25: 437–445. 10.2343/geochemj.25.437Search in Google Scholar

[32] Toyoda S and Naruse T, 2002. Eolian dust from the Asian deserts to the Japanese Islands since the Last Glacial Maximum; the basis for the ESR method. Transactions, Japanese Geomorphological Union 23: 811–820. Search in Google Scholar

[33] Toyoda S, Goff F, Ikeda S and Ikeya M, 1995. ESR dating of El Cajete and Battleship Rock Member of Valles Rhyolite, Valles Caldera, New Mexico. Journal of Volcanology and Geothermal Research 67(1–3): 29–40, DOI 10.1016/0377-0273(94)00093-V. http://dx.doi.org/10.1016/0377-0273(94)00093-V10.1016/0377-0273(94)00093-VSearch in Google Scholar

[34] Toyoda S, Rink WJ, Schwarcz HP and Ikeya M, 1996. Formation of E’1 precursors in quartz: applications to dosimetry and dating. Applied Radiation and Isotopes 47(11–12): 1393–1398, DOI 10.1016/S0969-8043(96)00142-X. http://dx.doi.org/10.1016/S0969-8043(96)00142-X10.1016/S0969-8043(96)00142-XSearch in Google Scholar

[35] Toyoda S, Rink WJ, Yonezawa C and Kagami T, 2001. In-situ production of alpha particles and alpha recoil particles in quartz applied to ESR studies of oxygen vacancies. Quaternary Science Reviews 20(5–9): 1057–1061, DOI 10.1016/S0277-3791(00)00018-4. http://dx.doi.org/10.1016/S0277-3791(00)00018-410.1016/S0277-3791(00)00018-4Search in Google Scholar

[36] Toyoda S and Schwarcz HP, 1997a. Counterfeit E1′ signal in quartz. Radiation Measurements 27(1): 59–66, DOI 10.1016/S1350-4487(96)00073-X. http://dx.doi.org/10.1016/S1350-4487(96)00073-X10.1016/S1350-4487(96)00073-XSearch in Google Scholar

[37] Toyoda S and Schwarcz HP, 1997b. The hazard of the counterfeit E1′ signal in quartz to the ESR dating of fault movements. Quaternary Science Reviews 16(3–5): 483–486, DOI 10.1016/S0277-3791(96)00088-1. http://dx.doi.org/10.1016/S0277-3791(96)00088-110.1016/S0277-3791(96)00088-1Search in Google Scholar

[38] Toyoda S, Takeuchi D, Asai T, Komuro K and Horikawa Y, 2005. Spin-spin relaxation times of the E1′ center in quartz with and without irradiation: implications for the formation process of the oxygen vacancies in nature. Radiation Measurements 39(5): 503–508, DOI 10.1016/j.radmeas.2004.09.002. 10.1016/j.radmeas.2004.09.002Search in Google Scholar

[39] Toyoda S, Tsukamoto S, Hameau S, Usui H and Suzuki T, 2006. Dating of Japanese Quaternary tephras by ESR and Luminescence methods. Quaternary Geochronology 1(4): 320–326, DOI 10.1016/j.quageo.2006.03.007. http://dx.doi.org/10.1016/j.quageo.2006.03.00710.1016/j.quageo.2006.03.007Search in Google Scholar

[40] Usami T, Toyoda S, Bahadur H, Srivastava AK and Nishido H, 2009. Characterization of the E1′ center in quartz: Role of aluminum hole centers and oxygen vacancies. Physica B: Condensed Matter 404(20): 3819–3823, DOI 10.1016/j.physb.2009.07.075. http://dx.doi.org/10.1016/j.physb.2009.07.07510.1016/j.physb.2009.07.075Search in Google Scholar

[41] Wieser A and Regulla D, 1989. ESR dosimetry in the “Giga-rad” range. Applied Radiation and Isotopes 40(10–12): 911–913, DOI 10.1016/0883-2889(89)90016-6. 10.1016/0883-2889(89)90016-6Search in Google Scholar

[42] Weeks RA and Nelson CM, 1960. Trapped electrons in irradiated quartz and silica: II. Electron spin resonance. Journal of American Ceramic Society 43(8): 399–404, DOI 10.1111/j.1151-2916.1960.tb13682.x. http://dx.doi.org/10.1111/j.1151-2916.1960.tb13682.x10.1111/j.1151-2916.1960.tb13682.xSearch in Google Scholar

[43] Yamamoto Y, Toyoda S, Nagasima K, Igarashi Y and Tada R, 2010. The grain size dependence of the E1′ center observed in quartz of atmospheric deposition at two Japanese cities. Geochronometria 37: 9–12, DOI 10.2478/v10003-010-0024-2. http://dx.doi.org/10.2478/v10003-010-0024-210.2478/v10003-010-0024-2Search in Google Scholar

[44] Yawata T and Hashimoto T, 2004. Identification of the volcanic quartz origins from dune sand using a single-grain RTL measurement. Quaternary Science Reviews 23(9–10): 1183–1186, DOI 10.1016/j.quascirev.2003.09.010. http://dx.doi.org/10.1016/j.quascirev.2003.09.01010.1016/j.quascirev.2003.09.010Search in Google Scholar

eISSN:
1897-1695
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Geosciences, other