Acceso abierto

Machine Learning Approach for Predicting Environmental Impact: A Neuro-Fuzzy Model for Life Cycle Impact Assessment of Strawberry Production

, ,  y   
28 jun 2025

Cite
Descargar portada

Fan J., Liu C., Xie J., Han L., Zhang C., Guo D., Niu J., Jin H., McConkey B. G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. International Journal of Environmental Research and Public Health 2022:19(16):9817. https://doi.org/10.3390/ijerph19169817 Search in Google Scholar

Ghoroghi A., Rezgui Y., Petri I. Advances in application of machine learning to life cycle assessment: A literature review. The International Journal of Life Cycle Assessment 2022:27:433–456. https://doi.org/10.1007/s11367-022-02030-3 Search in Google Scholar

Schlegl F., Gantner J., Traunspurger R., Albrecht S., Leistner P. LCA of buildings in Germany: Proposal for a future benchmark based on existing databases. Energy and Buildings 2019:194:342–350. https://doi.org/10.1016/j.enbuild.2019.04.038 Search in Google Scholar

Dong Y., Ng. S.T., Liu P. A comprehensive analysis towards benchmarking of life cycle assessment of buildings based on systematic review. Building and Environment 2021:204:108–162. https://doi.org/10.1016/j.buildenv.2021.108162 Search in Google Scholar

Koyamparambath A., Adibi N., Szablewski C., Adibi S. A., Sonnemann G. Implementing Artificial Intelligence Techniques to Predict Environmental Impacts: Case of Construction Products. Sustainability 2022:14(6):3699. https://doi.org/10.3390/su14063699 Search in Google Scholar

Harvey J., et al. (Eds.). (2020). Pavement, Roadway, and Bridge Life Cycle Assessment. Taylor & Francis Group. Proceedings of the International Symposium on Pavement. Roadway, and Bridge Life Cycle Assessment 2020. LCA 2020, Sacramento, CA, 3–6 June 2020. Search in Google Scholar

Tiwari M. K., et al. Role of Artificial Intelligence in Green Public Procurement. Applications of Emerging Technologies and AI/ML Algorithms, Asset Analytics. Springer 2023:361–371. https://doi.org/10.1007/978-981-99-1019-9_32 Search in Google Scholar

Dunn J. B., Balaprakash P. Chapter 1 – Overview of Data Science and Sustainability Analysis. Data Science Applied to Sustainability Analysis 2021:1–14. https://doi.org/10.1016/B978-0-12-817976-5.00001-2 Search in Google Scholar

Burkov A. The Hundred-Page Machine Learning Book. Quebec City: 2019. Search in Google Scholar

Cerulli G. Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata. Springer, 2023. https://doi.org/10.1007/978-3-031-41337-7 Search in Google Scholar

Xue R. X., Zhang X., Pang Y., Gao F., Xu M., Lin S., et al. (2024). A review of machine learning applications in life cycle assessment studies. Science of The Total Environment 2024:912:168969. https://doi.org/10.1016/j.scitotenv.2023.168969 Search in Google Scholar

Barros N. N., Ruschel R. C. Machine Learning for Whole-Building Life Cycle Assessment: A Systematic Literature Review. Proceedings of the 18th International Conference on Computing in Civil and Building Engineering 2021:98:109–122. https://doi.org/10.1007/978-3-030-51295-8_10 Search in Google Scholar

Tao M., Li D., Song R., Suh S., Keller A. A. OrganoRelease – A framework for modeling the release of organic chemicals from the use and post-use of consumer products. Environmental Pollution 2018:234:751–761. https://doi.org/10.1016/j.envpol.2017.11.058 Search in Google Scholar

Sharif S. A., Hammad A. Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost, and Life-Cycle Assessment. Journal of Building Engineering 2019:21:429–445. https://doi.org/10.1016/j.jobe.2018.11.006 Search in Google Scholar

Meng F., LaFleur C., Wijesinghe A., Colvin, J. Data-driven approach to fill in data gaps for life cycle inventory of dual fuel technology. Fuel 2019:246:187–195. https://doi.org/10.1016/j.fuel.2019.02.124 Search in Google Scholar

Liao M., Kelley S., Yao Y. Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based Process Simulation. ACS Sustainable Chemistry & Engineering 2020:8(2):1252–1261. https://doi.org/10.1021/acssuschemeng.9b06522 Search in Google Scholar

Nguyen T. H., Nong D., Paustian, K. Surrogate-based multi-objective optimization of management options for agricultural landscapes using artificial neural networks. Ecological Modelling 2019:400:1–13. https://doi.org/10.1016/j.ecolmodel.2019.02.018 Search in Google Scholar

Thilakarathna P. S. M., Seo S., Baduge K. S. K., Lee H., Mendis P., Foliente G. Embodied carbon analysis and benchmarking emissions of high and ultra-high strength concrete using machine learning algorithms. Journal of Cleaner Production 2020:262:121281. https://doi.org/10.1016/j.jclepro.2020.121281 Search in Google Scholar

Cheng F., Porter M. D., Colosi L. M. Is hydrothermal treatment coupled with carbon capture and storage an energyproducing negative emissions technology? Energy Conversion and Management 2020:203:112252. https://doi.org/10.1016/j.enconman.2019.112252 Search in Google Scholar

Cornago S., Vitali A., Brondi C., Low J. S. C. Electricity Technological Mix Forecasting for Life Cycle Assessment Aware Scheduling. Procedia CIRP 2020:90:268–273. https://doi.org/10.1016/j.procir.2020.01.099 Search in Google Scholar

Naseri H., Jahanbakhsh H., Hosseini P., Moghadas Nejad F. Designing sustainable concrete mixture by developing a new machine learning technique. Journal of Cleaner Production 2020:258:120578. https://doi.org/10.1016/j.jclepro.2020.120578 Search in Google Scholar

Płoszaj-Mazurek M., Ryńska E., Grochulska-Salak M. Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design. Energies 2020:13(20):5289. https://doi.org/10.3390/en13205289 Search in Google Scholar

Xikai M., Lixiong W., Jiwei L., Xiaoli Q., Tongyao W. Comparison of regression models for estimation of carbon emissions during building’s lifecycle using designing factors: A case study of residential buildings in Tianjin, China.Energy and Buildings 2019:204:109519. https://doi.org/10.1016/j.enbuild.2019.109519 Search in Google Scholar

D’Amico A., Ciulla G., Traverso M., Lo Brano V., Palumbo E. Artificial Neural Networks to assess energy and environmental performance of buildings: An Italian case study. Journal of Cleaner Production 2019:239:117993. https://doi.org/10.1016/j.jclepro.2019.117993 Search in Google Scholar

Duprez S., Fouquet M., Herreros Q., Jusselme T. Improving life cycle-based exploration methods by coupling sensitivity analysis and metamodels. Sustainable Cities and Society 2019:44:70–84. https://doi.org/10.1016/j.scs.2018.09.032 Search in Google Scholar

Khoshnevisan B., Rafiee S., Mousazadeh H. Environmental impact assessment of open field and greenhouse strawberry production. European Journal of Agronomy 2013:50:29–37. https://doi.org/10.1016/j.eja.2013.05.003 Search in Google Scholar

Khoshnevisan B., Rafiee S., Omid M., Mousazadeh H., Sefeedpari, P. Prognostication of environmental indices in potato production using artificial neural networks. Journal of Cleaner Production 2013:52:402–409. https://doi.org/10.1016/j.jclepro.2013.03.028 Search in Google Scholar

Khoshnevisan B., Rajaeifar M. A., Clark S., Shamahirband S., Anuar N. B., Mohd Shuib N. L., Gani, A. Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling. Science of The Total Environment 2014:481:242–251. https://doi.org/10.1016/j.scitotenv.2014.02.052 Search in Google Scholar

Khanali M., Mobli H., Hosseinzadeh-Bandbafha H. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environmental Science and Pollution Research 2017:24:26324–26340. https://doi.org/10.1007/s11356-017-0234-5 Search in Google Scholar

Mousavi-Avval S. H., Rafiee S., Sharifi M., Hosseinpour S., Shah A. Combined application of Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System for modeling energy and environmental emissions of oilseed production. Renewable and Sustainable Energy Reviews 2017:78:807–820. https://doi.org/10.1016/j.rser.2017.05.002 Search in Google Scholar

Vlontzos G., Pardalos P. M. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing DEA Window analysis and artificial neural networks. Renewable and Sustainable Energy Reviews 2017:76:155–162. https://doi.org/10.1016/j.rser.2017.03.054 Search in Google Scholar

Nabavi-Pelesaraei A., Rafiee S., Mohtasebi S. S., Hosseinzadeh-Bandbafha H., Chau K. Integration of artificial intelligence methods and life cycle assessment to predict energy output and environmental impacts of paddy production. Science of The Total Environment 2018:631–632:1279–1294. https://doi.org/10.1016/j.scitotenv.2018.03.088 Search in Google Scholar

Lee E. K., Zhang W.-J., Zhang X., Adler P. R., Lin S., Feingold B. J., et al. Projecting life-cycle environmental impacts of corn production in the U.S. Midwest under future climate scenarios using a machine learning approach. Science of The Total Environment 2020:714:136697. https://doi.org/10.1016/j.scitotenv.2020.136697 Search in Google Scholar

Romeiko X. X., Guo Z., Pang Y., Lee E. K., Zhang X. Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production. Sustainability 2020:12(4):1481. https://doi.org/10.3390/su12041481 Search in Google Scholar

Kaab A., Sharifi M., Mobli H., Nabavi-Pelesaraei A., Chau K. Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of The Total Environment 2019:664:1005–1019. https://doi.org/10.1016/j.scitotenv.2019.02.004 Search in Google Scholar

Ozbilen A., Aydin M., Dincer I., Rosen M. A. Life cycle assessment of nuclear-based hydrogen production via a copper–chlorine cycle: A neural network approach. International Journal of Hydrogen Energy 2013:38(15):6314–6322. https://doi.org/10.1016/j.ijhydene.2013.03.071 Search in Google Scholar

Marvuglia A., Kanevski M., Benetto E. Machine learning for toxicity characterization of organic chemical emissions using USEtox database: Learning the structure of the input space. Environment International 2015:83:72–85. https://doi.org/10.1016/j.envint.2015.05.011 Search in Google Scholar

Slapnik M., Istenič D., Pintar M., Udovč A. Extending life cycle assessment normalization factors and use of machine learning – A Slovenian case study. Ecological Indicators 2016:50:161–172. https://doi.org/10.1016/j.ecolind.2014.10.028 Search in Google Scholar

Hou P., Jolliet O., Zhu J., Xu M. Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. Environment International 2020:135:105393. https://doi.org/10.1016/j.envint.2019.105393 Search in Google Scholar

Asif Z., Chen Z., Zhu Z. H. An integrated life cycle inventory and artificial neural network model for mining air pollution management. International Journal of Environmental Science and Technology 2019:16(4):1847–1856. https://doi.org/10.1007/s13762-018-1813-9 Search in Google Scholar

Song R., Keller A. A., Suh S. Rapid Life-Cycle Impact Screening Using Artificial Neural Networks. Environmental Science & Technology 2017:51(18):10777–10785. https://doi.org/10.1021/acs.est.7b02862 Search in Google Scholar

Zhu X., Ho C.-H., Wang X. Application of Life Cycle Assessment and Machine Learning for High-Throughput Screening of Green Chemical Substitutes. ACS Sustainable Chemistry & Engineering 2020:8(30):11141–11151. https://doi.org/10.1021/acssuschemeng.0c02211 Search in Google Scholar

Azari R., Garshasbi S., Amini P., Rashed-Ali H., Mohammadi Y. Multi-objective optimization of building envelope design for life cycle environmental performance. Energy and Buildings 2016:126:524–534. https://doi.org/10.1016/j.enbuild.2016.05.054 Search in Google Scholar

Zhao Y., Zhang Q., Li F. Y. Patterns and drivers of household carbon footprint of the herdsmen in the typical steppe region of Inner Mongolia, China: A case study in Xilinhot City. Journal of Cleaner Production 2019:232:408–416. https://doi.org/10.1016/j.jclepro.2019.05.351 Search in Google Scholar

Abdella G. M., Kucukvar M., Onat N. C., Al-Yafay H. M., Bulak M. E. Sustainability assessment and modeling based on supervised machine learning techniques: The case for food consumption. Journal of Cleaner Production 2020:251:119661. https://doi.org/10.1016/j.jclepro.2019.119661 Search in Google Scholar

Ziyadi M., Al-Qadi I. L. Model uncertainty analysis using data analytics for life-cycle assessment (LCA) applications. The International Journal of Life Cycle Assessment 2019:24(8):945–959. https://doi.org/10.1007/s11367-018-1528-7 Search in Google Scholar

Romeiko X. X., Lee E. K., Sorunmu Y., Zhang X. Spatially and Temporally Explicit Life Cycle Environmental Impacts of Soybean Production in the U.S. Midwest. Environmental Science & Technology 2020:54(8):4758–4768. https://doi.org/10.1021/acs.est.9b06874 Search in Google Scholar

Abokersh M. H., Vallès M., Cabeza L. F., Boer D. A framework for the optimal integration of solar-assisted district heating in different urban-sized communities: A robust machine learning approach incorporating global sensitivity analysis. Applied Energy 2020:267:114903. https://doi.org/10.1016/j.apenergy.2020.114903 Search in Google Scholar

Zadeh L. A. Fuzzy sets. Information and Control 1965:8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X Search in Google Scholar

Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 1980:15(1):116–132. https://doi.org/10.1109/TSMC.1985.6313399 Search in Google Scholar

Jang J.-S. R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics 1993:23(3):665–685. https://doi.org/10.1109/21.256541 Search in Google Scholar

Suganya R., Shanthi R. Fuzzy C-Means Algorithm: A review. Semantics Scholar 2012. Search in Google Scholar

Yager R. R., Filev D. P. Generation of fuzzy rules by mountain clustering. Journal of Intelligent and Fuzzy Systems 1994:2(3):209–219. https://doi.org/10.3233/IFS-1994-2301 Search in Google Scholar

Bataineh K., Najia M., Saqera M. A comparison study between various fuzzy clustering algorithms. Semantics Scholar 2011. Search in Google Scholar

Mola M., Amiri-Ahouee R. ANFIS model based on fuzzy C-mean, grid partitioning, and subtractive clustering for detection of stator winding inter-turn fault in PM synchronous motor. International Transactions on Electrical Energy Systems 2021:31(3):e12770. https://doi.org/10.1002/2050-7038.12770 Search in Google Scholar

Naderloo L., Alimardani R., Omid M., Sarmadian F., Javadikia P., Torabi M. Y., Alimardani F. Application of ANFIS to predict crop yield based on different energy inputs. Measurement 2012:45(6):1406–1413. https://doi.org/10.1016/j.measurement.2012.03.025 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Ciencias de la vida, otros