This work is licensed under the Creative Commons Attribution 4.0 International License.
European Commission. Directorate-General for Research and Innovation. A sustainable bioeconomy for Europe – Strengthening the connection between economy, society and the environment – Updated bioeconomy strategy, Publications Office, 2018. https://data.europa.eu/doi/10.2777/792130Search in Google Scholar
European Commission. Directorate-General for Research and Innovation. Innovating for sustainable growth – A bioeconomy for Europe, Publications Office, 2012. https://data.europa.eu/doi/10.2777/6462Search in Google Scholar
European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A New EU Forest Strategy: For Forests and the Forest-Based Sector; Brussels, 2013:17.Search in Google Scholar
Wohlgemuth R., Twardowski T., Aguilar A. Bioeconomy Moving Forward Step by Step – A Global Journey. New Biotechnology 2021:61:22–28. https://doi.org/10.1016/j.nbt.2020.11.006Search in Google Scholar
Stegmann P., Londo M., Junginger M. The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resources, Conservation & Recycling: X 2020:6:100029. https://doi.org/10.1016/j.rcrx.2019.100029Search in Google Scholar
Pajtík J., Konôpka B., Lukac M. Biomass Functions and Expansion Factors in Young Norway Spruce (Picea abies [L.] Karst) Trees. Forest Ecology and Management 2008:256(5):1096–1103. https://doi.org/10.1016/j.foreco.2008.06.013Search in Google Scholar
Klavins L., Almonaitytė K., Šalaševičienė A., Zommere A., Spalvis K., Vincevica-Gaile Z., Korpinen R., Klavins M. Strategy of Coniferous Needle Biorefinery into Value-Added Products to Implement Circular Bioeconomy Concepts in Forestry Side Stream Utilization. Molecules 2023:28(20):7085. https://doi.org/10.3390/molecules28207085Search in Google Scholar
Keeling C. I., Bohlmann J. Genes, Enzymes and Chemicals of Terpenoid Diversity in the Constitutive and Induced Defence of Conifers against Insects and Pathogens. New Phytologist 2006:170(4):657–675. https://doi.org/10.1111/j.1469-8137.2006.01716.xSearch in Google Scholar
Mofikoya O. O. Chemical Fingerprinting of Conifer Needle Extracts by Ultrahigh-Resolution Mass Spectrometry. Dissertation, University of Eastern Finland: Joensuu, 2022.Search in Google Scholar
Beluns S., Platnieks O., Sevcenko J., Jure M., Gaidukova G., Grase L., Gaidukovs S. Sustainable Wax Coatings Made from Pine Needle Extraction Waste for Nanopaper Hydrophobization. Membranes (Basel) 2022:12(5):537. https://doi.org/10.3390/membranes12050537Search in Google Scholar
Mofikoya O. O., Mäkinen M., Jänis J. Compositional Analysis of Essential Oil and Solvent Extracts of Norway Spruce Sprouts by Ultrahigh-Resolution Mass Spectrometry. Phytochemical Analysis 2022:33(3):392–401. https://doi.org/10.1002/pca.3097Search in Google Scholar
Dziedzinski M., Kobus-Cisowska J., Szymanowska D., Stuper-Szablewska K., Baranowska M. Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules 2020:25(15):3527. https://doi.org/10.3390/molecules25153527Search in Google Scholar
Kelkar V. M., Geils B. W., Becker D. R., Overby S. T., Neary D. G. How to Recover More Value from Small Pine Trees: Essential Oils and Resins. Biomass Bioenergy 2006:30(4):316–320. https://doi.org/10.1016/j.biombioe.2005.07.009Search in Google Scholar
Bhardwaj K., Silva A. S., Atanassova M., Sharma R., Nepovimova E., Musilek K., Sharma R., Alghuthaymi M. A., Dhanjal D. S., Nicoletti M. et al. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules 2021:26(10):3005. https://doi.org/10.3390/molecules26103005Search in Google Scholar
Popescu D. I., Frum A., Dobrea C. M., Cristea R., Gligor F. G., Vicas L. G., Ionete R. E., Sutan N. A., Georgescu C. Comparative Antioxidant and Antimicrobial Activities of Several Conifer Needles and Bark Extracts. Pharmaceutics 2024:16(1):52. https://doi.org/10.3390/pharmaceutics16010052Search in Google Scholar
Vanaga I., Gubernator J., Nakurte I., Kletnieks U., Muceniece R., Jansone B. Identification of Abies Sibirica L. Polyprenols and Characterisation of Polyprenol-Containing Liposomes. Molecules 2020:25(8):1801. https://doi.org/10.3390/molecules25081801Search in Google Scholar
IEA Bioenergy. Biorefineries: Adding Value to the Sustainable Utilisation of Biomass, 2009. [Online]. [Accessed https://www.ieabioenergy.com/blog/publications/biorefineries-adding-value-to-the-sustainable-utilisation-ofbiomass/Search in Google Scholar
Vu H. P., Nguyen L. N., Vu M. T., Johir M. A. H., McLaughlan R., Nghiem L. D. A Comprehensive Review on the Framework to Valorise Lignocellulosic Biomass as Biorefinery Feedstocks. Science of The Total Environment 2020:743:140630. https://doi.org/10.1016/j.scitotenv.2020.140630Search in Google Scholar
Horváth I. T., Anastas P. T. Innovations and Green Chemistry. Chemical Reviews 2007:107(6):2169–2173. https://doi.org/10.1021/cr078380vSearch in Google Scholar
Anastas P., Eghbali N. Green Chemistry: Principles and Practice. Chemical Society Reviews 2010:39:301–312. https://doi.org/10.1039/B918763BSearch in Google Scholar
Soultanov V. S., Kraeva L. A. Antibacterial Activity of Conifer Green Needle Complex Against Corynebacteria. Natural Product Communications 2020:15(1). https://doi.org/10.1177/1934578X19900611Search in Google Scholar
Hessel V., Tran N. N., Asrami M. R., Tran Q. D., Van Duc Long N., Escribà-Gelonch M., Tejada J. O., Linke S., Sundmacher K. Sustainability of Green Solvents – Review and Perspective. Green Chemistry 2022:24(2):410–437. https://doi.org/10.1039/D1GC03662ASearch in Google Scholar
Torres-Valenzuela L. S., Ballesteros-Gómez A., Rubio S. Green Solvents for the Extraction of High Added-Value Compounds from Agri-Food Waste. Food Engineering Reviews 2019:12(1):83–100. https://doi.org/10.1007/s12393-019-09206-ySearch in Google Scholar
Alder C. M., Hayler J. D., Henderson R. K., Redman A. M., Shukla L., Shuster L. E., Sneddon H. F. Updating and Further Expanding GSK’s Solvent Sustainability Guide. Green Chemistry 2016:18(13):3879–3890. https://doi.org/10.1039/C6GC00611FSearch in Google Scholar
Klavins L., Mezulis M., Nikolajeva V., Klavins M. Composition, Sun Protective and Antimicrobial Activity of Lipophilic Bilberry (Vaccinium myrtillus L.) and Lingonberry (Vaccinium vitis-idaea L.) Extract Fractions. Learning with Technologies 2021:138:110784. https://doi.org/10.1016/j.lwt.2020.110784Search in Google Scholar
Environmental Impact of Solvent Recycling – CleanPlanet Chemical. [Online]. [Accessed 24.03.2024]. Available: https://www.cleanplanetchemical.com/environmental-impact/ (accessed Mar 24, 2024).Search in Google Scholar
Jun Y., Lee S. M., Ju H. K., Lee H. J., Choi H. K., Jo G. S., Kim Y. S. Comparison of the Profile and Composition of Volatiles in Coniferous Needles According to Extraction Methods. Molecules 2016:21(3). https://doi.org/10.3390/molecules21030363Search in Google Scholar
Mofikoya O. O., Mäkinen M., Jänis J. Chemical Fingerprinting of Conifer Needle Essential Oils and Solvent Extracts by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. ACS Omega 2020:5(18):10543–10552. https://doi.org/10.1021/acsomega.0c00901Search in Google Scholar
Polar Protic and Aprotic Solvents – Chemistry LibreTexts. [Online]. [Accessed 24.03.2024]. Available: https://chem.libretexts.org/Bookshelves/Organic_Chemistry/Supplemental_Modules_(Organic_Chemistry)/Fundamentals/Intermolecular_Forces/Polar_Protic_and_Aprotic_SolventsSearch in Google Scholar
Yara-Varón E., Fabiano-Tixier A. S., Balcells M., Canela-Garayoa R., Bily A., Chemat F. Is It Possible to Substitute Hexane with Green Solvents for Extraction of Carotenoids? A Theoretical versus Experimental Solubility Study. Royal Society of Chemistry Advances 2016:6(33):27750–27759. https://doi.org/10.1039/C6RA03016ESearch in Google Scholar
Haque F., El-Nashar H. A. S., Akbor Md. S., Alfaifi M., Bappi M. H., Chowdhury A. K., Hossain M. K., El-Shazly M., Albayouk T., Saleh N., et al. Anti-Inflammatory Activity of d-Pinitol Possibly through Inhibiting COX-2 Enzyme: In-Vivo and in-Silico Studies. Frontiers Chemistry 2024:12:1366844. https://doi.org/10.3389/fchem.2024.1366844Search in Google Scholar
Hartmann H., Trumbore S. Understanding the Roles of Nonstructural Carbohydrates in Forest Trees – from What We Can Measure to What We Want to Know. New Phytologist 2016:211(2):386–403. https://doi.org/10.1111/nph.13955Search in Google Scholar
Raitanen J. E., Järvenpää E., Korpinen R., Mäkinen S., Hellström J., Kilpeläinen P., Liimatainen J., Ora A., Tupasela T., Jyske T. Tannins of Conifer Bark as Nordic Piquancy – Sustainable Preservative and Aroma? Molecules 2020:25(3). https://doi.org/10.3390/molecules25030567Search in Google Scholar
Klavins L., Perkons I., Mezulis M., Viksna A., Klavins M. Procyanidins from Cranberry Press Residues – Extraction Optimization, Purification and Characterization. Plants 2022:11(24):3517. https://doi.org/10.3390/plants11243517Search in Google Scholar