Acceso abierto

Features of Heat and Mass Transfer in the Thermodynamic Equilibrium Region of Gas Hydrates

 y   
17 nov 2024

Cite
Descargar portada

Lallouche A., Kolodyaznaya V., Boulkrane M. S., Baranenko D. Low Temperature Refrigeration as an Alternative Anti-Pest Treatment of Alexei, V. Milkov Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth-Sci. Rev. 2004:66:183–197. https://doi.org/10.1016/j.earscirev.2003.11.002 Search in Google Scholar

Boswell R., Collett T. S. Current perspectives on gas hydrate resources. Energy Environ. Sci. 2011:4:1045–1528. https://doi.org/10.1039/C0EE00203H Search in Google Scholar

Pavlenko A. M. Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates. Energies 2020:13(13):3396. https://doi.org/10.3390/en13133396 Search in Google Scholar

Pavlenko A. M., Koshlak H. A New Method for the Rapid Synthesis of Gas Hydrates for their Storage and Transportation. Environmental and Climate Technologies 2022:26(1):199–212. https://doi.org/10.2478/rtuect-2022-0016 Search in Google Scholar

Brown T. D., Taylor C. E., Bernardo M. P. Rapid Gas Hydrate Formation Processes: Will They Work? Energies 2010:3:1154–1175. https://doi.org/10.3390/en3061154 Search in Google Scholar

Chong Z. R., Yang S. H., Babu P., Linga P., Li X. S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy 2016:162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.061 Search in Google Scholar

Pavlenko A. M. Self-preservation Effect of Gas Hydrates. Roc. Och. Srod. 2021:23:346–355. https://doi.org/10.54740/ros.2021.023 Search in Google Scholar

Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439 Search in Google Scholar

Andersson V., Kv˦rner A., Norway O., Haines M. Gas hydrates for deep ocean storage of CO2 - Novel technology for utilising hydrates for transport of CO2. Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies. 5 September 2004, Vancouver, Canada, 2005. https://doi.org/10.1016/B978-008044704-9/50169-5 Search in Google Scholar

Takeya S., Ebinuma Т., Uchida Т., Nagao J., Narita H. Self-preservation effect and dissociation rates of CH4 hydrate. J. Crystal Growth 2002:237–239:379–382. https://doi.org/10.1016/S0022-0248(01)01946-7 Search in Google Scholar

Pavlenko A. Application of Synthesized Hydrates in the National Economy. Environmental and Climate Technologies 2024:28(1):149–164. https://doi.org/10.2478/rtuect-2024-0013 Search in Google Scholar

Pavlenko A., Koshlak H. Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases. Energies 2021:14:5912. https://doi.org/10.3390/en14185912 Search in Google Scholar

Basok B., Davydenko B., Pavlenko A. M. Numerical Network Modeling of Heat and Moisture Transfer through Capillary-Porous Building Materials. Materials 2021:14(8):1819. https://doi.org/10.3390/ma14081819 Search in Google Scholar

Koshlak H., Pavlenko A. Method of formation of thermophysical properties of porous materials. Roc. Och.Srod. 2019:21(2):1253–1262. Search in Google Scholar

Pavlenko A. M. Energy conversion in heat and mass transfer processes in boiling emulsions. Therm. Scien. Eng. Prog. 2019:15:100439. https://doi.org/10.1016/j.tsep.2019.100439 Search in Google Scholar

Pavlenko A., Koshlak H. Production of porous material with projected thermophysical characteristics. Metal. Min.Ind. 2015:7(1):123–127. Search in Google Scholar

Pavlenko A. Self-preservation Effect of Gas Hydrates. Rocznik Ochrona Środowiska 2021:23:346–355. https://doi.org/10.54740/ros.2021.023 Search in Google Scholar

Filarsky F., Schmuck C., Schultz H. J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019:91(12):85–91. https://doi.org/10.3390/molecules26123615 Search in Google Scholar

Cheng C., Wang F., Tian Y., Wu X., Zheng J., Zhang J., Li L., Yang P., Zhao J. Review and prospects of hydrate cold storage technology. Renew. Sustain. Energy Rev. 2020:117:109492. https://doi.org/10.1016/j.rser.2019.109492 Search in Google Scholar

Veluswamy H. P., Kumar A., Kumar R., Linga P. An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application. Applied Energy 2017:188:190–199. https://doi.org/10.1016/j.apenergy.2016.12.002 Search in Google Scholar

Veluswamy H. P., Kumar A., Seo Y., Lee J. D., Linga P. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Applied Energy 2018:216:262–285. https://doi.org/10.1016/j.apenergy.2018.02.059 Search in Google Scholar

Wang C., Li X., Liang S., Li Q., Pang W., Zhao B., Chen G., Sun C. Modeling on effective thermal conductivity of hydrate-bearing sediments considering the shape of sediment particle. Energy 2023:285:129338. https://doi.org/10.1016/j.energy.2023.129338 Search in Google Scholar

Majid A. A. A., Koh C. A. 8 – Self-preservation phenomenon in gas hydrates and its application for energy storage, Elliot R. Bernstein (Eds.). In Developments in Physical & Theoretical Chemistry, Intra- and Intermolecular Interactions Between Non-covalently Bonded Species 2021:267–285. https://doi.org/10.1016/B978-0-12-817586-6.00008-6 Search in Google Scholar

Zhao J., Lv Q., Li Y., Yang M., Liu W., Yao L., Wang S., Zhang Y., Song Y. In-situ visual observation for the formation and dissociation of methane hydrates in porous media by magnetic resonance imaging. Magn. Reson. Imaging 2015:33(4):485–490. https://doi.org/10.1016/j.mri.2014.12.010 Search in Google Scholar

Zhang P., Chen X., Li S., Wu Q., Xu Zh. Heat transfer and water migration rules during formation/dissociation of methane hydrate under temperature fields with gradient. International Journal of Heat and Mass Transfer 2021:169:120929. https://doi.org/10.1016/j.ijheatmasstransfer.2021.120929 Search in Google Scholar

Kiran B. S., Sowjanya K., Prasad P. S., Yoon J. H. Experimental investigations on tetrahydrofuran-methanewater system: Rapid methane gas storage in hydrates. Oil & Gas Science and Technology. Rev. IFP Energies Nouvelles 2019:74:12. https://doi.org/10.2516/ogst/2018092 Search in Google Scholar

Siažik J., Malcho M. Accumulation of primary energy into natural gas hydrates. Procedia Eng. 2017:192:782–787. https://doi.org/10.1016/j.proeng.2017.06.135 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Ciencias de la vida, otros