This work is licensed under the Creative Commons Attribution 4.0 International License.
Cairns T. C., Zheng X., Zheng P., Sun J., Meyer V. Turning inside out: Filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. Journal of Fungi 2021:7(7):535. https://doi.org/10.3390/jof7070535Search in Google Scholar
Dhevagi P., Ramya A., Priyatharshini S., Thanuja K. G., Ambreetha S., Nivetha A. Industrially important fungal enzymes: productions and applications. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective 2021:263–309. https://doi.org/10.1007/978-3-030-68260-6_11Search in Google Scholar
El-Gendi H., Saleh A. H., Badierah R., Redwan E. M., El-Maradny Y. A., El-Fakharany E. M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. Journal of Fungi 2021:8(1):23. https://doi.org/10.3390/jof8010023Search in Google Scholar
Sunar K., Kumar U., Deshmukh S. Recent applications of enzymes in personal care products, in Agro-Industrial Wastes as Feedstock for Enzyme Production. Agro-Industrial Wastes as Feedstock for Enzyme Production. Academic Press 2016:279–298. https://doi.org/10.1016/B978-0-12-802392-1.00012-5Search in Google Scholar
Niyonzima F. N. Detergent-compatible fungal cellulases. Folia Microbiologica 2021:66(1):25–40. https://doi.org/10.1007/s12223-020-00838-wSearch in Google Scholar
Ljubica V., Pitzler C., Körfer G., Jakob F., Martinez R., Maurer K.-H., Schwaneberg U. Advances in protease engineering for laundry detergents. New Biotechnology 2015:32(6):629–634. https://doi.org/10.1016/j.nbt.2014.12.010Search in Google Scholar
Rigoldi F., Donini S., Redaelli A., Parisini E., Gautieri A. Engineering of thermostable enzymes for industrial applications. APL Bioengineering 2018:2(1). https://doi.org/10.1063/1.4997367Search in Google Scholar
Wunderlich S., Gatto K. A. Consumer perception of genetically modified organisms and sources of information. Advances in Nutrition 2015:6(6):842–851. https://doi.org/10.3945/an.115.008870Search in Google Scholar
Ryan C. D, Henggeler E., Gilbert S., Schaul A. J., Swarthout J. T. Exploring the GMO narrative through labeling: strategies, products, and politics. GM Crops & Food 2024:15(1):51–66. https://doi.org/10.1080/21645698.2024.2318027Search in Google Scholar
Aaron A., Liaukonyte J., Wang E., Zhuet X. GMO and non-GMO labeling effects: Evidence from a quasi-natural experiment. Marketing Science 2023:42(2):233–250. https://doi.org/10.1287/mksc.2022.1375Search in Google Scholar
Prückler M., Siebenhandl-Ehn S., Apprich C., Höltinger S., Haas C., Schmid E., Kneifel W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT – Food Science and Technology 2014:56(2):211–221. https://doi.org/10.1016/j.lwt.2013.12.004Search in Google Scholar
Neves M. A., Kimura T., Shimizu N., Shiiba K. Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Brazilian Archives of Biology and Technology 2006:49(3):481–490. https://doi.org/10.1590/S1516-89132006000400017Search in Google Scholar
Onipe O. O., Jideani A. I. O., Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology 2015:50(12):2509–2518. https://doi.org/10.1111/ijfs.12935Search in Google Scholar
Nandini C. D., Salimath P. V. Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good chapati/roti (Indioan flat bread) making quality. Food Chemistry 2001:73:197–203. https://doi.org/10.1016/S0308-8146(00)00278-8Search in Google Scholar
Curti E., Carini E., Bonacini G., Tribuzio G., Vittadini E. Effect of the addition of bran fractions on bread properties. Journal of Cereal Science 2013:57(3):325–332. https://doi.org/10.1016/j.jcs.2012.12.003Search in Google Scholar
Beaugrand J., Reis D., Guillon F., Debeire P., Chabbert B. Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls. International Journal of Plant Sciences 2004:165(4):553–563. https://doi.org/10.1086/386554Search in Google Scholar
Ravindran R., Jaiswal A. K. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. Bioengineering 2016:3(4):30. https://doi.org/10.3390/bioengineering3040030Search in Google Scholar
Sharma D., Garlapat V. K., Goel G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 2016:7(2):88–97. https://doi.org/10.1080/21655979.2016.1160190Search in Google Scholar
Balandrán-Quintana R. R., Mercado-Ruiz J. N., Mendoza-Wilson A. M. Wheat bran proteins: a review of their uses and potential. Food Reviews International 2015:31(3):279–293. https://doi.org/10.1080/87559129.2015.1015137Search in Google Scholar
Mischko W., Hirte M., Roehrer S., Engelhardt H., Mehlmer N., Minceva M., Brück T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chemistry 2018:20(11):2637–2650. https://doi.org/10.1039/C8GC00434JSearch in Google Scholar
Guo J., Zhang M., Fang Z. Valorization of mushroom by‐products: a review. Journal of the Science of Food and Agriculture 2022:102(13):5593–5605. https://doi.org/10.1002/jsfa.11946Search in Google Scholar
Hu F., RagauskasA. Pretreatment and lignocellulosic chemistry. Bioenergy Research 2012:5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0Search in Google Scholar
Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure 1995:3(9):853–859. https://doi.org/10.1016/S0969-2126(01)00220-9Search in Google Scholar
Couturier M., Berrin J.-G. The saccharification step: the main enzymatic components. In Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production. Springer, 2013:93–110. https://doi.org/10.1007/978-3-642-37861-4_5Search in Google Scholar
Cocinero E. J., David P., Gamblin B. D. G., Simons J. P. The building blocks of cellulose_the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. Journal of the American Chemical Society 2009:131:11117–11123. https://doi.org/10.1021/ja903322wSearch in Google Scholar
Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances 2009:27(2):185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001Search in Google Scholar
Dashtaban M., Schraft H., Quin W. Fungal bioconversion of lignocellulosic residues_opportunities & perspectives. International Journal of Biological Sciences 2009:5:578–595. https://doi.org/10.7150/ijbs.5.578Search in Google Scholar
Kracher D., Ludwig R. Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. Die Bodenkultur: Journal of Land Management, Food and Environment 2016:67(3):145–163. https://doi.org/10.1515/boku-2016-0013Search in Google Scholar
Dervilly-Pinel G. Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydrate Polymers 2004:55(2):171–177. https://doi.org/10.1016/j.carbpol.2003.09.004Search in Google Scholar
Moreira L., Filho E. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 2008:79:165–178. https://doi.org/10.1007/s00253-008-1423-4Search in Google Scholar
Kjeldahl J. A new method for the estimation of nitrogen in organic compounds. Z. Anal. chem 1883:22(1):366–382. https://doi.org/10.1007/BF01338151Search in Google Scholar
Shaigani P., Awad D., Redai V., Fuchs M., Haack M., Mehlmer N., Brueck T. Oleaginous yeasts-substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories 2021:20:1–18. https://doi.org/10.1186/s12934-021-01710-3Search in Google Scholar
Deshavath N. N., Mukherjee G., Goud V. V., Veeranki V. D., Sastri C. V. Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules 2020:156:180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045Search in Google Scholar
Veeken A., Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 1999:69(3):249–254. https://doi.org/10.1016/S0960-8524(98)00188-6Search in Google Scholar
Manni H., Sun Y., Zou D., Yuan H., Zhu B., Li X., Pang Y. Influence of temperature on hydrolysis acidification of food waste. Procedia Environmental Sciences 2012:16:85–94. https://doi.org/10.1016/j.proenv.2012.10.012Search in Google Scholar
Kim J. S., Lee Y., Torget R. W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. In Twenty-Second Symposium on Biotechnology for Fuels and Chemicals 2001. Springer, https://doi.org/10.1007/978-1-4612-0217-2_28Search in Google Scholar
Krall S. M., McFeeters R. F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. Journal of Agricultural and food Chemistry 1998:46(4):1311–1315. https://doi.org/10.1021/jf970473ySearch in Google Scholar
Duarte A. W. F., Dos Santos J. A., Vianna M. V., Vieira J. M. F., Mallagutti V. H., Inforsato F. J., Wentzel L. C. P., Lario L. D., Rodrigues A., Pagnocca F. C. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Critical Reviews in Biotechnology 2018:38(4):600–619. https://doi.org/10.1080/07388551.2017.1379468Search in Google Scholar
Maheshwari R., Bharadwaj G., Bhat M. K. Thermophilic Fungi: Their Physiology and Enzymes. Microbiology and Molecular Biology Reviews 2000:64(3):461–488. https://doi.org/10.1128/mmbr.64.3.461-488.2000Search in Google Scholar
Kües U. Fungal enzymes for environmental management. Current Opinion in Biotechnology 2015:33:268–278. https://doi.org/10.1016/j.copbio.2015.03.006Search in Google Scholar
Rivers D. B., Gracheck S. J., Woodford L. C., Emert G. H. Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. Biotechnol. Bioeng. 1984:26(7). https://doi.org/10.1002/bit.260260727Search in Google Scholar
Rafiei V., VélëzH., TzelepisG. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. International Journal of Molecular Sciences 2021:22(17):9359. https://doi.org/10.3390/ijms22179359Search in Google Scholar
Shankar A., Jain K., Kuhad R., Sharma K. Comparison of lignocellulosic enzymes and CAZymes between ascomycetes (Trichoderma) and basidiomycetes (Ganoderma) species: a proteomic approach. Zeitschrift für Naturforschung C 2023. https://doi.org/10.1515/znc-2023-0125Search in Google Scholar
Martinez D. et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology 2008:26(5):553–560.Search in Google Scholar
Yao C., Sun N., Gao W., Sun Y., Zhang J., Liu H., Zhong Y. Overexpression of a novel vacuolar serine proteaseencoding gene (spt1) to enhance cellulase production in Trichoderma reesei. Fermentation 2023:9(2):191. https://doi.org/10.3390/fermentation9020191Search in Google Scholar
Beygmoradi A., Homaei A., Hemmati R., Fernandes P. Recombinant protein expression: challenges in production and folding related matters. International Journal of Biological Macromolecules 2023:233:123407. https://doi.org/10.1016/j.ijbiomac.2023.123407Search in Google Scholar
İncir İ., Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expression and Purification 2024:219:106463. https://doi.org/10.1016/j.pep.2024.106463Search in Google Scholar
Dixit Y., Yadav P., Sharma A. K., Pandey P., Kuila A. Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. Renewable and Sustainable Energy Reviews 2023:187:113772. https://doi.org/10.1016/j.rser.2023.113772Search in Google Scholar
Gomes A. M. V, Carmo T. S., Carvalho L. S., Bahia F. M., Skorupa N. S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018:6(2):38. https://doi.org/10.3390/microorganisms6020038Search in Google Scholar
De Brabander P., Uitterhaegen E., Delmulle T., De Winter K., Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnology Advances 2023:64:108121. https://doi.org/10.1016/j.biotechadv.2023.108121Search in Google Scholar
Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnology for biofuels 2013:6:1–14. https://doi.org/10.1186/1754-6834-6-127Search in Google Scholar
Arntzen M. Ø., Bengtsson O., Várnai A., Delogu F., Mathiesen G., Eijsink V. G. H. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Scientific Reports 2020:10(1):20267. https://doi.org/10.1038/s41598-020-75217-zSearch in Google Scholar
Martinez D., Larrondo L. F., Putnam N., Gelpke M. D. S., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., J Detter C., Larimer F., Coutinho P. M., Henrissat B., Berka R., Cullen D., Rokhsar D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature biotechnology 2004:22(6):695–700. https://doi.org/10.1038/nbt967Search in Google Scholar
Kumar R., Verma D., Sharma S., Satyanarayana T. Applicability of Fungal Xylanases in Food Biotechnology. In: Satyanarayana T., Deshmukh S. K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology 2023:465–491. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_16Search in Google Scholar
Mohammad I. E., Syed S., Darukamalli M. R., Alapati K. S. Review on Thermozymes Produced by Thermophilic Fungi: A Gold Mine for Industrial Applications. European Journal of Biology and Biotechnology 2023:4(1):1–5. https://doi.org/10.24018/ejbio.2023.4.1.438Search in Google Scholar
Amin F., Asad S. A., Nazli Z.-i-H., Kalsoom U., Bhatti H. N., Bilal M. Immobilization, biochemical, thermodynamic, and fruit juice clarification properties of lignocellulosic biomass–derived exo-polygalacturonase from Penicillium paxilli. Biomass Conversion and Biorefinery 2023:13(14):13181–13196. https://doi.org/10.1007/s13399-022-02559-1Search in Google Scholar
Rosgaard L., Pedersen S., Cherry J. R., Harris P., Meyer A. S. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress 2006:22(2):493–498. https://doi.org/10.1021/bp050361oSearch in Google Scholar