Acceso abierto

Sustainable Cultivation of Ascomycete Fungi on Wheat Bran for Hydrolytic Enzyme Production

, , ,  y   
26 oct 2024

Cite
Descargar portada

Cairns T. C., Zheng X., Zheng P., Sun J., Meyer V. Turning inside out: Filamentous fungal secretion and its applications in biotechnology, agriculture, and the clinic. Journal of Fungi 2021:7(7):535. https://doi.org/10.3390/jof7070535 Search in Google Scholar

Dhevagi P., Ramya A., Priyatharshini S., Thanuja K. G., Ambreetha S., Nivetha A. Industrially important fungal enzymes: productions and applications. Recent Trends in Mycological Research: Volume 2: Environmental and Industrial Perspective 2021:263–309. https://doi.org/10.1007/978-3-030-68260-6_11 Search in Google Scholar

El-Gendi H., Saleh A. H., Badierah R., Redwan E. M., El-Maradny Y. A., El-Fakharany E. M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. Journal of Fungi 2021:8(1):23. https://doi.org/10.3390/jof8010023 Search in Google Scholar

Sunar K., Kumar U., Deshmukh S. Recent applications of enzymes in personal care products, in Agro-Industrial Wastes as Feedstock for Enzyme Production. Agro-Industrial Wastes as Feedstock for Enzyme Production. Academic Press 2016:279–298. https://doi.org/10.1016/B978-0-12-802392-1.00012-5 Search in Google Scholar

Niyonzima F. N. Detergent-compatible fungal cellulases. Folia Microbiologica 2021:66(1):25–40. https://doi.org/10.1007/s12223-020-00838-w Search in Google Scholar

Ljubica V., Pitzler C., Körfer G., Jakob F., Martinez R., Maurer K.-H., Schwaneberg U. Advances in protease engineering for laundry detergents. New Biotechnology 2015:32(6):629–634. https://doi.org/10.1016/j.nbt.2014.12.010 Search in Google Scholar

Rigoldi F., Donini S., Redaelli A., Parisini E., Gautieri A. Engineering of thermostable enzymes for industrial applications. APL Bioengineering 2018:2(1). https://doi.org/10.1063/1.4997367 Search in Google Scholar

Wunderlich S., Gatto K. A. Consumer perception of genetically modified organisms and sources of information. Advances in Nutrition 2015:6(6):842–851. https://doi.org/10.3945/an.115.008870 Search in Google Scholar

Ryan C. D, Henggeler E., Gilbert S., Schaul A. J., Swarthout J. T. Exploring the GMO narrative through labeling: strategies, products, and politics. GM Crops & Food 2024:15(1):51–66. https://doi.org/10.1080/21645698.2024.2318027 Search in Google Scholar

Aaron A., Liaukonyte J., Wang E., Zhuet X. GMO and non-GMO labeling effects: Evidence from a quasi-natural experiment. Marketing Science 2023:42(2):233–250. https://doi.org/10.1287/mksc.2022.1375 Search in Google Scholar

Prückler M., Siebenhandl-Ehn S., Apprich C., Höltinger S., Haas C., Schmid E., Kneifel W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT – Food Science and Technology 2014:56(2):211–221. https://doi.org/10.1016/j.lwt.2013.12.004 Search in Google Scholar

Neves M. A., Kimura T., Shimizu N., Shiiba K. Production of alcohol by simultaneous saccharification and fermentation of low-grade wheat flour. Brazilian Archives of Biology and Technology 2006:49(3):481–490. https://doi.org/10.1590/S1516-89132006000400017 Search in Google Scholar

Onipe O. O., Jideani A. I. O., Beswa D. Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science & Technology 2015:50(12):2509–2518. https://doi.org/10.1111/ijfs.12935 Search in Google Scholar

Nandini C. D., Salimath P. V. Carbohydrate composition of wheat, wheat bran, sorghum and bajra with good chapati/roti (Indioan flat bread) making quality. Food Chemistry 2001:73:197–203. https://doi.org/10.1016/S0308-8146(00)00278-8 Search in Google Scholar

Curti E., Carini E., Bonacini G., Tribuzio G., Vittadini E. Effect of the addition of bran fractions on bread properties. Journal of Cereal Science 2013:57(3):325–332. https://doi.org/10.1016/j.jcs.2012.12.003 Search in Google Scholar

Beaugrand J., Reis D., Guillon F., Debeire P., Chabbert B. Xylanase-mediated hydrolysis of wheat bran: evidence for subcellular heterogeneity of cell walls. International Journal of Plant Sciences 2004:165(4):553–563. https://doi.org/10.1086/386554 Search in Google Scholar

Ravindran R., Jaiswal A. K. Microbial enzyme production using lignocellulosic food industry wastes as feedstock: A review. Bioengineering 2016:3(4):30. https://doi.org/10.3390/bioengineering3040030 Search in Google Scholar

Sharma D., Garlapat V. K., Goel G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 2016:7(2):88–97. https://doi.org/10.1080/21655979.2016.1160190 Search in Google Scholar

Balandrán-Quintana R. R., Mercado-Ruiz J. N., Mendoza-Wilson A. M. Wheat bran proteins: a review of their uses and potential. Food Reviews International 2015:31(3):279–293. https://doi.org/10.1080/87559129.2015.1015137 Search in Google Scholar

Mischko W., Hirte M., Roehrer S., Engelhardt H., Mehlmer N., Minceva M., Brück T. Modular biomanufacturing for a sustainable production of terpenoid-based insect deterrents. Green Chemistry 2018:20(11):2637–2650. https://doi.org/10.1039/C8GC00434J Search in Google Scholar

Guo J., Zhang M., Fang Z. Valorization of mushroom by‐products: a review. Journal of the Science of Food and Agriculture 2022:102(13):5593–5605. https://doi.org/10.1002/jsfa.11946 Search in Google Scholar

Hu F., RagauskasA. Pretreatment and lignocellulosic chemistry. Bioenergy Research 2012:5:1043–1066. https://doi.org/10.1007/s12155-012-9208-0 Search in Google Scholar

Davies G., Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure 1995:3(9):853–859. https://doi.org/10.1016/S0969-2126(01)00220-9 Search in Google Scholar

Couturier M., Berrin J.-G. The saccharification step: the main enzymatic components. In Lignocellulose Conversion: Enzymatic and Microbial Tools for Bioethanol Production. Springer, 2013:93–110. https://doi.org/10.1007/978-3-642-37861-4_5 Search in Google Scholar

Cocinero E. J., David P., Gamblin B. D. G., Simons J. P. The building blocks of cellulose_the intrinsic conformational structures of cellobiose, its epimer, lactose, and their singly hydrated complexes. Journal of the American Chemical Society 2009:131:11117–11123. https://doi.org/10.1021/ja903322w Search in Google Scholar

Sánchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology advances 2009:27(2):185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001 Search in Google Scholar

Dashtaban M., Schraft H., Quin W. Fungal bioconversion of lignocellulosic residues_opportunities & perspectives. International Journal of Biological Sciences 2009:5:578–595. https://doi.org/10.7150/ijbs.5.578 Search in Google Scholar

Kracher D., Ludwig R. Cellobiose dehydrogenase: An essential enzyme for lignocellulose degradation in nature – A review / Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. Die Bodenkultur: Journal of Land Management, Food and Environment 2016:67(3):145–163. https://doi.org/10.1515/boku-2016-0013 Search in Google Scholar

Dervilly-Pinel G. Investigation of the distribution of arabinose residues on the xylan backbone of water-soluble arabinoxylans from wheat flour. Carbohydrate Polymers 2004:55(2):171–177. https://doi.org/10.1016/j.carbpol.2003.09.004 Search in Google Scholar

Moreira L., Filho E. An overview of mannan structure and mannan-degrading enzyme systems. Applied Microbiology and Biotechnology 2008:79:165–178. https://doi.org/10.1007/s00253-008-1423-4 Search in Google Scholar

Kjeldahl J. A new method for the estimation of nitrogen in organic compounds. Z. Anal. chem 1883:22(1):366–382. https://doi.org/10.1007/BF01338151 Search in Google Scholar

Shaigani P., Awad D., Redai V., Fuchs M., Haack M., Mehlmer N., Brueck T. Oleaginous yeasts-substrate preference and lipid productivity: a view on the performance of microbial lipid producers. Microbial Cell Factories 2021:20:1–18. https://doi.org/10.1186/s12934-021-01710-3 Search in Google Scholar

Deshavath N. N., Mukherjee G., Goud V. V., Veeranki V. D., Sastri C. V. Pitfalls in the 3, 5-dinitrosalicylic acid (DNS) assay for the reducing sugars: Interference of furfural and 5-hydroxymethylfurfural. International Journal of Biological Macromolecules 2020:156:180–185. https://doi.org/10.1016/j.ijbiomac.2020.04.045 Search in Google Scholar

Veeken A., Hamelers B. Effect of temperature on hydrolysis rates of selected biowaste components. Bioresource Technology 1999:69(3):249–254. https://doi.org/10.1016/S0960-8524(98)00188-6 Search in Google Scholar

Manni H., Sun Y., Zou D., Yuan H., Zhu B., Li X., Pang Y. Influence of temperature on hydrolysis acidification of food waste. Procedia Environmental Sciences 2012:16:85–94. https://doi.org/10.1016/j.proenv.2012.10.012 Search in Google Scholar

Kim J. S., Lee Y., Torget R. W. Cellulose hydrolysis under extremely low sulfuric acid and high-temperature conditions. In Twenty-Second Symposium on Biotechnology for Fuels and Chemicals 2001. Springer, https://doi.org/10.1007/978-1-4612-0217-2_28 Search in Google Scholar

Krall S. M., McFeeters R. F. Pectin hydrolysis: effect of temperature, degree of methylation, pH, and calcium on hydrolysis rates. Journal of Agricultural and food Chemistry 1998:46(4):1311–1315. https://doi.org/10.1021/jf970473y Search in Google Scholar

Duarte A. W. F., Dos Santos J. A., Vianna M. V., Vieira J. M. F., Mallagutti V. H., Inforsato F. J., Wentzel L. C. P., Lario L. D., Rodrigues A., Pagnocca F. C. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Critical Reviews in Biotechnology 2018:38(4):600–619. https://doi.org/10.1080/07388551.2017.1379468 Search in Google Scholar

Maheshwari R., Bharadwaj G., Bhat M. K. Thermophilic Fungi: Their Physiology and Enzymes. Microbiology and Molecular Biology Reviews 2000:64(3):461–488. https://doi.org/10.1128/mmbr.64.3.461-488.2000 Search in Google Scholar

Kües U. Fungal enzymes for environmental management. Current Opinion in Biotechnology 2015:33:268–278. https://doi.org/10.1016/j.copbio.2015.03.006 Search in Google Scholar

Rivers D. B., Gracheck S. J., Woodford L. C., Emert G. H. Limitations of the DNS assay for reducing sugars from saccharified lignocellulosics. Biotechnol. Bioeng. 1984:26(7). https://doi.org/10.1002/bit.260260727 Search in Google Scholar

Rafiei V., VélëzH., TzelepisG. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. International Journal of Molecular Sciences 2021:22(17):9359. https://doi.org/10.3390/ijms22179359 Search in Google Scholar

Shankar A., Jain K., Kuhad R., Sharma K. Comparison of lignocellulosic enzymes and CAZymes between ascomycetes (Trichoderma) and basidiomycetes (Ganoderma) species: a proteomic approach. Zeitschrift für Naturforschung C 2023. https://doi.org/10.1515/znc-2023-0125 Search in Google Scholar

Martinez D. et al., Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature Biotechnology 2008:26(5):553–560. Search in Google Scholar

Yao C., Sun N., Gao W., Sun Y., Zhang J., Liu H., Zhong Y. Overexpression of a novel vacuolar serine proteaseencoding gene (spt1) to enhance cellulase production in Trichoderma reesei. Fermentation 2023:9(2):191. https://doi.org/10.3390/fermentation9020191 Search in Google Scholar

Beygmoradi A., Homaei A., Hemmati R., Fernandes P. Recombinant protein expression: challenges in production and folding related matters. International Journal of Biological Macromolecules 2023:233:123407. https://doi.org/10.1016/j.ijbiomac.2023.123407 Search in Google Scholar

İncir İ., Kaplan Ö. Escherichia coli as a versatile cell factory: Advances and challenges in recombinant protein production. Protein Expression and Purification 2024:219:106463. https://doi.org/10.1016/j.pep.2024.106463 Search in Google Scholar

Dixit Y., Yadav P., Sharma A. K., Pandey P., Kuila A. Multiplex genome editing to construct cellulase engineered Saccharomyces cerevisiae for ethanol production from cellulosic biomass. Renewable and Sustainable Energy Reviews 2023:187:113772. https://doi.org/10.1016/j.rser.2023.113772 Search in Google Scholar

Gomes A. M. V, Carmo T. S., Carvalho L. S., Bahia F. M., Skorupa N. S. Comparison of yeasts as hosts for recombinant protein production. Microorganisms 2018:6(2):38. https://doi.org/10.3390/microorganisms6020038 Search in Google Scholar

De Brabander P., Uitterhaegen E., Delmulle T., De Winter K., Soetaert W. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Biotechnology Advances 2023:64:108121. https://doi.org/10.1016/j.biotechadv.2023.108121 Search in Google Scholar

Bischof R., Fourtis L., Limbeck A., Gamauf C., Seiboth B., Kubicek C. P. Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnology for biofuels 2013:6:1–14. https://doi.org/10.1186/1754-6834-6-127 Search in Google Scholar

Arntzen M. Ø., Bengtsson O., Várnai A., Delogu F., Mathiesen G., Eijsink V. G. H. Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Scientific Reports 2020:10(1):20267. https://doi.org/10.1038/s41598-020-75217-z Search in Google Scholar

Martinez D., Larrondo L. F., Putnam N., Gelpke M. D. S., Huang K., Chapman J., Helfenbein K. G., Ramaiya P., J Detter C., Larimer F., Coutinho P. M., Henrissat B., Berka R., Cullen D., Rokhsar D. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature biotechnology 2004:22(6):695–700. https://doi.org/10.1038/nbt967 Search in Google Scholar

Kumar R., Verma D., Sharma S., Satyanarayana T. Applicability of Fungal Xylanases in Food Biotechnology. In: Satyanarayana T., Deshmukh S. K. (eds) Fungi and Fungal Products in Human Welfare and Biotechnology 2023:465–491. Springer, Singapore. https://doi.org/10.1007/978-981-19-8853-0_16 Search in Google Scholar

Mohammad I. E., Syed S., Darukamalli M. R., Alapati K. S. Review on Thermozymes Produced by Thermophilic Fungi: A Gold Mine for Industrial Applications. European Journal of Biology and Biotechnology 2023:4(1):1–5. https://doi.org/10.24018/ejbio.2023.4.1.438 Search in Google Scholar

Amin F., Asad S. A., Nazli Z.-i-H., Kalsoom U., Bhatti H. N., Bilal M. Immobilization, biochemical, thermodynamic, and fruit juice clarification properties of lignocellulosic biomass–derived exo-polygalacturonase from Penicillium paxilli. Biomass Conversion and Biorefinery 2023:13(14):13181–13196. https://doi.org/10.1007/s13399-022-02559-1 Search in Google Scholar

Rosgaard L., Pedersen S., Cherry J. R., Harris P., Meyer A. S. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress 2006:22(2):493–498. https://doi.org/10.1021/bp050361o Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Ciencias de la vida, otros