Acceso abierto

An Empirical Approach to Solar Photovoltaic Cell Temperature Prediction

 y   
06 oct 2024

Cite
Descargar portada

Ding Q., Huang J., Chen J., Luo X. Climate warming, renewable energy consumption and rare earth market: Evidence from the United States. Energy 2024:290:130276. https://doi.org/10.1016/j.energy.2024.130276 Search in Google Scholar

Blumberga D., Chen B., Ozarska A., Indzere Z. Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-0102 Search in Google Scholar

Kostevica V., Dzikevics M. Bibliometric Analysis of the Climate Change Impact on Energy Systems. Environmental and Climate Technologies 2023:27(1):950–963. https://doi.org/10.2478/rtuect-2023-0069 Search in Google Scholar

Khamisani A. A., Liu D. P. P., Cloward D. J., Bai D. R. Design Methodology of Off-Grid PV Solar Powered System (A Case Study of Solar Powered Bus Shelter). Search in Google Scholar

Liu Q., Yu G., Liu J. J. Solar Radiation as Large-Scale Resource for Energy-Short World. Energy Environ. 2009:20(3):319–329. https://doi.org/10.1260/095830509788066466 Search in Google Scholar

Iheanetu K. J. Solar Photovoltaic Power Forecasting: A Review. Sustainability 2022:14(24):17005. https://doi.org/10.3390/su142417005 Search in Google Scholar

Bodnár I., Matusz-Kalász D., Koós D. Experimental and numerical analysis of solar cell temperature transients. Pollack Periodica 2021:16(2):104–109. https://doi.org/10.1556/606.2020.00260 Search in Google Scholar

Shaik F., Lingala S. S., Veeraboina P. Effect of various parameters on the performance of solar PV power plant: a review and the experimental study. Sustainable Energy Research 2023:10(1):6. https://doi.org/10.1186/s40807-023-00076-x Search in Google Scholar

Jathar L. D., et al. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environ. Pollution 2023:326:121474. https://doi.org/10.1016/j.envpol.2023.121474 Search in Google Scholar

Ceylan İ., Erkaymaz O., Gedik E., Gürel A. E. The prediction of photovoltaic module temperature with artificial neural networks. Case Stud. Therm. Eng. 2014:3:11–20. https://doi.org/10.1016/j.csite.2014.02.001 Search in Google Scholar

Schiro F., Benato A., Stoppato A., Destro N. Improving photovoltaics efficiency by water cooling: Modelling and experimental approach. Energy 2017:137:798–810. https://doi.org/10.1016/j.energy.2017.04.164 Search in Google Scholar

Ansari E., Akhtar M. N., Othman W. A. F. W., Abu Bakar E., Alhady S. S. N. Numerical Investigation of Thermal Efficiency of a Solar Cell. Applied Sciences 2022:12(21):10887. https://doi.org/10.3390/app122110887 Search in Google Scholar

Parthiban R., Ponnambalam P. An Enhancement of the Solar Panel Efficiency: A Comprehensive Review. Front. Energy Res. 2022:10. https://doi.org/10.3389/fenrg.2022.937155 Search in Google Scholar

Cheraghizade M., Jamali-Sheini F. Photovoltaic behavior of SnS solar cells under temperature variations. Optik 2022:254:168635. https://doi.org/10.1016/j.ijleo.2022.168635 Search in Google Scholar

Wei Z. et al. Understanding the temperature sensitivity of the photovoltaic parameters of perovskite solar cells. Solar Energy 2023:264:112040. https://doi.org/10.1016/j.solener.2023.112040 Search in Google Scholar

Piotrowski L. J., Simões M. G., Farret F. A. Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Solar Energy 2020:207:103–109. https://doi.org/10.1016/j.solener.2020.06.087 Search in Google Scholar

Kersten F. et al. Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature. Solar Energy Materials and Solar Cells 2015:142:83–86. https://doi.org/10.1016/j.solmat.2015.06.015 Search in Google Scholar

Taghinia A., Yazdi F., Fazel P., Anousheh S. N., Davoudi K. G. Comparison of single junction GaAs and In0.2Ga0.8N based solar cells at various temperatures. Energy Procedia 2012:14:919–924. https://doi.org/10.1016/j.egypro.2011.12.1033 Search in Google Scholar

Liao W., Heo Y., Xu S. Evaluation of Temperature Dependent Models for PV Yield Prediction. [Online]. [Accessed 18.09.2021]. Available: https://www.semanticscholar.org/paper/Evaluation-of-Temperature-Dependent-Models-for-PV-Liao-Heo/a232d5d270cfdbef9feef9e603e64ba3c314d59d Search in Google Scholar

Kamuyu W. C. L., J. Won L. C., Ahn H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018:11(2):447. https://doi.org/10.3390/en11020447 Search in Google Scholar

Du Y., Tao W., Liu Y., Jiang J., Huang H. Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules. Solar Energy 2017:146:257–263. https://doi.org/10.1016/j.solener.2017.02.049 Search in Google Scholar

Vijaykumar R., Rudramoorthy R., Mangalore A. R. Prediction of Solar PV Panel Temperature Using Mathematical Models and Artificial Neural Networks. J. Comput. Theor. Nanosci. 2017:14(10):4986–4997. https://doi.org/10.1166/jctn.2017.6909 Search in Google Scholar

Coskun C., Koçyiğit N., Oktay Z. Estimation of pv module surface temperature using artificial neural networks. Mugla J. Sci. Technol. 2016:2(2). https://doi.org/10.22531/muglajsci.283611 Search in Google Scholar

Motuzienė V., Bielskus J., Lapinskienė V., Rynkun G. Office Building’s Occupancy Prediction Using Extreme Learning Machine Model with Different Optimization Algorithms. Environ. Clim. Technol. 2021:25(1):525–536. https://doi.org/10.2478/rtuect-2021-0038 Search in Google Scholar

Serrano-Luján L., Toledo C., Colmenar J. M., Abad J., Urbina A. Accurate thermal prediction model for buildingintegrated photovoltaics systems using guided artificial intelligence algorithms. Applied Energy 2022:315:119015. https://doi.org/10.1016/j.apenergy.2022.119015 Search in Google Scholar

Jošt M. et al. Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Adv. Energy Mater. 2020:10(25):2000454. https://doi.org/10.1002/aenm.202000454 Search in Google Scholar

Meng Q. et al. Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 2020:32:12784–12792. https://doi.org/10.1007/s10854-020-03029-y Search in Google Scholar

Khaledi P., Behboodnia M., Karimi M. Simulation and Optimization of Temperature Effect in Solar Cells CdTe with Back Connection Cu2O. Int. J. Opt. 2022:e1207082. https://doi.org/10.1155/2022/1207082 Search in Google Scholar

Zhang C., Zhang Y., Su J., Gu T., Yang M. Performance prediction of PV modules based on artificial neural network and explicit analytical model. J. Renew. Sustain. Energy 2020:12(1):013501. https://doi.org/10.1063/1.5131432 Search in Google Scholar

Paulescu M. et al. Online Forecasting of the Solar Energy Production. Ann. West Univ. Timisoara – Phys. 2018:60(1):104–110. https://doi.org/10.2478/awutp-2018-0011 Search in Google Scholar

Mishra R., Tiwari G. Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. Solar Energy 2013:90:58–67. https://doi.org/10.1016/j.solener.2012.12.022 Search in Google Scholar

Dubey S., Solanki S. C., Tiwari A. Energy and exergy analysis of PV/T air collectors connected in series. Energy Build. 2009:41. https://doi.org/10.1016/j.enbuild.2009.03.010 Search in Google Scholar

Fawagreh K., Gaber M. M., Elyan E. Random forests: from early developments to recent advancements. Syst. Sci. Control Eng. 2014:2(1):602–609. https://doi.org/10.1080/21642583.2014.956265 Search in Google Scholar

Breiman L. Random Forests. Mach. Learn. 2001:45(1):5–32. https://doi.org/10.1023/A:1010933404324 Search in Google Scholar

Schonlau M., Zou R. Y. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020:20(1):3–29. https://doi.org/10.1177/1536867X20909688 Search in Google Scholar

Amiry H. et al. Assessment of improved models for predicting PV module temperature and their electrical performance in a semi-arid coastal region. Int. J. Green Energy 2023:20(14):1584–1596. https://doi.org/10.1080/15435075.2023.2166788 Search in Google Scholar

Gholami A. et al. Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling. Solar Energy 2023:252:176–194. https://doi.org/10.1016/j.solener.2023.01.039 Search in Google Scholar

Du Y. et al. Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Convers. Manag. 2016:108:60–67. https://doi.org/10.1016/j.enconman.2015.10.065 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Ciencias de la vida, Ciencias de la vida, otros