This work is licensed under the Creative Commons Attribution 4.0 International License.
Ding Q., Huang J., Chen J., Luo X. Climate warming, renewable energy consumption and rare earth market: Evidence from the United States. Energy 2024:290:130276. https://doi.org/10.1016/j.energy.2024.130276Search in Google Scholar
Blumberga D., Chen B., Ozarska A., Indzere Z. Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-0102Search in Google Scholar
Kostevica V., Dzikevics M. Bibliometric Analysis of the Climate Change Impact on Energy Systems. Environmental and Climate Technologies 2023:27(1):950–963. https://doi.org/10.2478/rtuect-2023-0069Search in Google Scholar
Khamisani A. A., Liu D. P. P., Cloward D. J., Bai D. R. Design Methodology of Off-Grid PV Solar Powered System (A Case Study of Solar Powered Bus Shelter).Search in Google Scholar
Liu Q., Yu G., Liu J. J. Solar Radiation as Large-Scale Resource for Energy-Short World. Energy Environ. 2009:20(3):319–329. https://doi.org/10.1260/095830509788066466Search in Google Scholar
Iheanetu K. J. Solar Photovoltaic Power Forecasting: A Review. Sustainability 2022:14(24):17005. https://doi.org/10.3390/su142417005Search in Google Scholar
Bodnár I., Matusz-Kalász D., Koós D. Experimental and numerical analysis of solar cell temperature transients. Pollack Periodica 2021:16(2):104–109. https://doi.org/10.1556/606.2020.00260Search in Google Scholar
Shaik F., Lingala S. S., Veeraboina P. Effect of various parameters on the performance of solar PV power plant: a review and the experimental study. Sustainable Energy Research 2023:10(1):6. https://doi.org/10.1186/s40807-023-00076-xSearch in Google Scholar
Jathar L. D., et al. Comprehensive review of environmental factors influencing the performance of photovoltaic panels: Concern over emissions at various phases throughout the lifecycle. Environ. Pollution 2023:326:121474. https://doi.org/10.1016/j.envpol.2023.121474Search in Google Scholar
Ceylan İ., Erkaymaz O., Gedik E., Gürel A. E. The prediction of photovoltaic module temperature with artificial neural networks. Case Stud. Therm. Eng. 2014:3:11–20. https://doi.org/10.1016/j.csite.2014.02.001Search in Google Scholar
Schiro F., Benato A., Stoppato A., Destro N. Improving photovoltaics efficiency by water cooling: Modelling and experimental approach. Energy 2017:137:798–810. https://doi.org/10.1016/j.energy.2017.04.164Search in Google Scholar
Ansari E., Akhtar M. N., Othman W. A. F. W., Abu Bakar E., Alhady S. S. N. Numerical Investigation of Thermal Efficiency of a Solar Cell. Applied Sciences 2022:12(21):10887. https://doi.org/10.3390/app122110887Search in Google Scholar
Parthiban R., Ponnambalam P. An Enhancement of the Solar Panel Efficiency: A Comprehensive Review. Front. Energy Res. 2022:10. https://doi.org/10.3389/fenrg.2022.937155Search in Google Scholar
Cheraghizade M., Jamali-Sheini F. Photovoltaic behavior of SnS solar cells under temperature variations. Optik 2022:254:168635. https://doi.org/10.1016/j.ijleo.2022.168635Search in Google Scholar
Wei Z. et al. Understanding the temperature sensitivity of the photovoltaic parameters of perovskite solar cells. Solar Energy 2023:264:112040. https://doi.org/10.1016/j.solener.2023.112040Search in Google Scholar
Piotrowski L. J., Simões M. G., Farret F. A. Feasibility of water-cooled photovoltaic panels under the efficiency and durability aspects. Solar Energy 2020:207:103–109. https://doi.org/10.1016/j.solener.2020.06.087Search in Google Scholar
Kersten F. et al. Degradation of multicrystalline silicon solar cells and modules after illumination at elevated temperature. Solar Energy Materials and Solar Cells 2015:142:83–86. https://doi.org/10.1016/j.solmat.2015.06.015Search in Google Scholar
Taghinia A., Yazdi F., Fazel P., Anousheh S. N., Davoudi K. G. Comparison of single junction GaAs and In0.2Ga0.8N based solar cells at various temperatures. Energy Procedia 2012:14:919–924. https://doi.org/10.1016/j.egypro.2011.12.1033Search in Google Scholar
Liao W., Heo Y., Xu S. Evaluation of Temperature Dependent Models for PV Yield Prediction. [Online]. [Accessed 18.09.2021]. Available: https://www.semanticscholar.org/paper/Evaluation-of-Temperature-Dependent-Models-for-PV-Liao-Heo/a232d5d270cfdbef9feef9e603e64ba3c314d59dSearch in Google Scholar
Kamuyu W. C. L., J. Won L. C., Ahn H. Prediction Model of Photovoltaic Module Temperature for Power Performance of Floating PVs. Energies 2018:11(2):447. https://doi.org/10.3390/en11020447Search in Google Scholar
Du Y., Tao W., Liu Y., Jiang J., Huang H. Heat transfer modeling and temperature experiments of crystalline silicon photovoltaic modules. Solar Energy 2017:146:257–263. https://doi.org/10.1016/j.solener.2017.02.049Search in Google Scholar
Vijaykumar R., Rudramoorthy R., Mangalore A. R. Prediction of Solar PV Panel Temperature Using Mathematical Models and Artificial Neural Networks. J. Comput. Theor. Nanosci. 2017:14(10):4986–4997. https://doi.org/10.1166/jctn.2017.6909Search in Google Scholar
Coskun C., Koçyiğit N., Oktay Z. Estimation of pv module surface temperature using artificial neural networks. Mugla J. Sci. Technol. 2016:2(2). https://doi.org/10.22531/muglajsci.283611Search in Google Scholar
Motuzienė V., Bielskus J., Lapinskienė V., Rynkun G. Office Building’s Occupancy Prediction Using Extreme Learning Machine Model with Different Optimization Algorithms. Environ. Clim. Technol. 2021:25(1):525–536. https://doi.org/10.2478/rtuect-2021-0038Search in Google Scholar
Serrano-Luján L., Toledo C., Colmenar J. M., Abad J., Urbina A. Accurate thermal prediction model for buildingintegrated photovoltaics systems using guided artificial intelligence algorithms. Applied Energy 2022:315:119015. https://doi.org/10.1016/j.apenergy.2022.119015Search in Google Scholar
Jošt M. et al. Perovskite Solar Cells go Outdoors: Field Testing and Temperature Effects on Energy Yield. Adv. Energy Mater. 2020:10(25):2000454. https://doi.org/10.1002/aenm.202000454Search in Google Scholar
Meng Q. et al. Effect of temperature on the performance of perovskite solar cells. J. Mater. Sci. Mater. Electron. 2020:32:12784–12792. https://doi.org/10.1007/s10854-020-03029-ySearch in Google Scholar
Khaledi P., Behboodnia M., Karimi M. Simulation and Optimization of Temperature Effect in Solar Cells CdTe with Back Connection Cu2O. Int. J. Opt. 2022:e1207082. https://doi.org/10.1155/2022/1207082Search in Google Scholar
Zhang C., Zhang Y., Su J., Gu T., Yang M. Performance prediction of PV modules based on artificial neural network and explicit analytical model. J. Renew. Sustain. Energy 2020:12(1):013501. https://doi.org/10.1063/1.5131432Search in Google Scholar
Paulescu M. et al. Online Forecasting of the Solar Energy Production. Ann. West Univ. Timisoara – Phys. 2018:60(1):104–110. https://doi.org/10.2478/awutp-2018-0011Search in Google Scholar
Mishra R., Tiwari G. Energy and exergy analysis of hybrid photovoltaic thermal water collector for constant collection temperature mode. Solar Energy 2013:90:58–67. https://doi.org/10.1016/j.solener.2012.12.022Search in Google Scholar
Dubey S., Solanki S. C., Tiwari A. Energy and exergy analysis of PV/T air collectors connected in series. Energy Build. 2009:41. https://doi.org/10.1016/j.enbuild.2009.03.010Search in Google Scholar
Fawagreh K., Gaber M. M., Elyan E. Random forests: from early developments to recent advancements. Syst. Sci. Control Eng. 2014:2(1):602–609. https://doi.org/10.1080/21642583.2014.956265Search in Google Scholar
Breiman L. Random Forests. Mach. Learn. 2001:45(1):5–32. https://doi.org/10.1023/A:1010933404324Search in Google Scholar
Schonlau M., Zou R. Y. The random forest algorithm for statistical learning. Stata J. Promot. Commun. Stat. Stata 2020:20(1):3–29. https://doi.org/10.1177/1536867X20909688Search in Google Scholar
Amiry H. et al. Assessment of improved models for predicting PV module temperature and their electrical performance in a semi-arid coastal region. Int. J. Green Energy 2023:20(14):1584–1596. https://doi.org/10.1080/15435075.2023.2166788Search in Google Scholar
Gholami A. et al. Impact of harsh weather conditions on solar photovoltaic cell temperature: Experimental analysis and thermal-optical modeling. Solar Energy 2023:252:176–194. https://doi.org/10.1016/j.solener.2023.01.039Search in Google Scholar
Du Y. et al. Evaluation of photovoltaic panel temperature in realistic scenarios. Energy Convers. Manag. 2016:108:60–67. https://doi.org/10.1016/j.enconman.2015.10.065Search in Google Scholar