Cite

[1] Ritchie H., Roser M. Emissions by sector. Our World in Data [Online]. [Accessed 01.07.2021]. Available: https://ourworldindata.org/emissions-by-sector#energy-electricity-heat-and-transport-73-2 Search in Google Scholar

[2] Hänggi S., et al. A review of synthetic fuels for passenger vehicles. Energy Reports 2019:5:555–569. https://doi.org/10.1016/j.egyr.2019.04.007 Search in Google Scholar

[3] Ghiat I., Al-Ansari T. A review of carbon capture and utilisation as a CO2 abatement opportunity within the EWF nexus. J. CO2 Util. 2020:45:101432. https://doi.org/10.1016/j.jcou.2020.101432 Search in Google Scholar

[4] Atsonios K., Panopoulos K. D., Kakaras E. Thermocatalytic CO2 hydrogenation for methanol and ethanol production: Process improvements. Int. J. Hydrogen Energy 2016:41(2):792–806. https://doi.org/10.1016/j.ijhydene.2015.12.001 Search in Google Scholar

[5] Arning K., et al. More green or less black ? How benefit perceptions of CO2 reductions vs. fossil resource savings shape the acceptance of CO2-based fuels and their conversion technology. Energy Clim. Chang. 2020:2:100025. https://doi.org/10.1016/j.egycc.2021.100025 Search in Google Scholar

[6] Alshammari Y. M. Scenario analysis for energy transition in the chemical industry: An industrial case study in Saudi Arabia. Energy Policy 2021:150:112128. https://doi.org/10.1016/j.enpol.2020.112128 Search in Google Scholar

[7] Chen X., Wu X., Lee K. Y. The mutual benefits of renewables and carbon capture: Achieved by an artificial intelligent scheduling strategy. Energy Convers. Manag. 2021:233:113856. https://doi.org/10.1016/j.enconman.2021.113856 Search in Google Scholar

[8] Zang G., et al. Performance and cost analysis of liquid fuel production from H2 and CO2 based on the Fischer-Tropsch process. J. CO2 Util. 2021:46:101459. https://doi.org/10.1016/j.jcou.2021.101459 Search in Google Scholar

[9] Naill R. F. A system dynamics model for national energy policy planning. Syst. Dyn. Rev. 1992:8(1):1–19. https://doi.org/10.1002/sdr.4260080102 Search in Google Scholar

[10] Sterman J. D. The Energy Transition and the Economy: A System Dynamics Approach. Boston: MIT, 1981. Search in Google Scholar

[11] Fiddaman T. S. Exploring policy options with a behavioral climate-economy model. Syst. Dyn. Rev. 2002:18(2):243–267.10.1002/sdr.241 Search in Google Scholar

[12] Barlas Y. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 1996:12(3):183–210. https://doi.org/10.1002/(SICI)1099-1727(199623)12:3%3C183::AID-SDR103%3E3.0.CO;2-410.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4 Search in Google Scholar

[13] Shenbagamuthuraman V., et al. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. Chemosphere 2022:286(P1):131587. https://doi.org/10.1016/j.chemosphere.2021.13158734303047 Search in Google Scholar

[14] Zeng K., Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 2010:36(3):307–326. https://doi.org/10.1016/j.pecs.2009.11.002 Search in Google Scholar

[15] European Energy Exchange. Environmental Markets-Spot Market 2021. [Online]. [Accessed 30.12.2021]. Available: https://www.eex.com/en/market-data/environmental-markets/spot-market Search in Google Scholar

[16] Latvian Center for Environment, Geology and Meteorology. Sadaļa Klimats. Aptuvenās SEG inventarizācijas par X-1 gadu (Climate Section. Estimated GHG inventories for year X-1.). 2021. [Online]. [Accessed 15.01.2022]. Available: https://videscentrs.lvgmc.lv/lapas/zinojums-par-klimatu (in Latvian) Search in Google Scholar

[17] Central Statistical Bureau Republic of Latvia. Energobilance, TJ, tūkst.toe (NACE 2. red.)2008 – 2020 (Energobilance, TJ, thousand toe (NACE 2nd rev.) 2008 – 2020.). 2020. [Online]. [Accessed 15.01.2022]. Available: https://data.stat.gov.lv/pxweb/lv/OSP_PUB/START__NOZ__EN__ENB/ENB060 (in Latvian) Search in Google Scholar

[18] Stella Architect. ISEE SYSTEMS [Online]. [Accessed dd.mm.yyyy]. Available: https://www.iseesystems.com/ Search in Google Scholar

[19] The European Commission. COMMUICATIO FROM THE COMMISSION TO THE EUROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AD SOCIAL COMMITTEE AND THE COMMITTEE OF THE REGIONS. Brussels: EC, 2008. Search in Google Scholar

[20] Nieskens D. L. S., et al. The conversion of carbon dioxide and hydrogen into methanol and higher alcohols. Catal. Commun. 2011:14(1):111–113.10.1016/j.catcom.2011.07.020 Search in Google Scholar

[21] Runge P., et al. Economic comparison of different electric fuels for energy scenarios in 2035. Appl. Energy 2019:233–234:1078–1093. https://doi.org/10.1016/j.apenergy.2018.10.023 Search in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other