Acceso abierto

Algae Culture Conditions and Process Parameters for Phycoremediation and Biomaterials Production


Cite

[1] United Nations, Department of Economic and Social Affairs. World Population Prospects 2019: Highlights. ST/ESA/SER.A/423. New York: UN, 2019. Search in Google Scholar

[2] Mateo-Sagasta J., Raschid-Sally L., Thebo A., Global Wastewater and Sludge Production, Treatment and Use. Chapter 2. Wastewater: Economic Asset in an Urbanizing World. Springer, 2015:15–38.10.1007/978-94-017-9545-6_2 Search in Google Scholar

[3] Wang J., et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of the Total Environment 2020:744:140997. https://doi.org/10.1016/j.scitotenv.2020.14099710.1016/j.scitotenv.2020.14099732755790 Search in Google Scholar

[4] Zhang Y.-T., et al. Long-Term Effects of Polyvinyl Chloride Microplastics on Anaerobic Granular Sludge for Recovering Methane from Wastewater. Environmental Science and Technology 2020:54(15):9662–9671. https://doi.org/10.1021/acs.est.0c0243310.1021/acs.est.0c0243332658461 Search in Google Scholar

[5] Jones R., et al. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data 2021:13:237–254. https://doi.org/10.5194/essd-13-237-202110.5194/essd-13-237-2021 Search in Google Scholar

[6] Mohsenpour S. F., et al. Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment 2021:752:142168. https://doi.org/10.1016/j.scitotenv.2020.14216810.1016/j.scitotenv.2020.14216833207512 Search in Google Scholar

[7] Solovchenko A., et al. Recent developments in microalgal conversion of organic-enriched waste streams. Current Opinion in Green and Sustainable Chemistry 2020:24:61–66. https://doi.org/10.1016/j.cogsc.2020.03.00610.1016/j.cogsc.2020.03.006 Search in Google Scholar

[8] Abdel-Raouf N., Al-Homaidan A. A., Ibraheem I. B. M. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 2012:19(3):257–275. https://doi.org/10.1016/j.sjbs.2012.04.00510.1016/j.sjbs.2012.04.005405256724936135 Search in Google Scholar

[9] Hena S., Gutierrez L., Croué J.-P. Removal of pharmaceutical and personal care products (PPCPs) from wastewater using microalgae: A review. Journal of Hazardous Materials 2021:403:124041. https://doi.org/10.1016/j.jhazmat.2020.12404110.1016/j.jhazmat.2020.12404133265054 Search in Google Scholar

[10] Nagarajan D., et al. Resource recovery from wastewaters using microalgae-based approaches: A circular bioeconomy perspective. Bioresource Technology 2020:302:122817. https://doi.org/10.1016/j.biortech.2020.12281710.1016/j.biortech.2020.12281732007309 Search in Google Scholar

[11] Koul B., Sharma K., Shah M. P. Phycoremediation: A sustainable alternative in wastewater treatment (WWT) regime. Environmental Technology & Innovation 2022:25:102040. https://doi.org/10.1016/j.eti.2021.10204010.1016/j.eti.2021.102040 Search in Google Scholar

[12] Upadhyay A. K., et al. Microalgae-assisted phyco-remediation and energy crisis solution: challenges and opportunity. New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, 2019:295–307.10.1016/B978-0-444-64191-5.00021-3 Search in Google Scholar

[13] Singh J., Dhar D. W. Overview of Carbon Capture Technology: Microalgal Biorefinery Concept and State-of-the-Art. Frontiers in Marine Science 2019:6:29. https://doi.org/10.3389/fmars.2019.0002910.3389/fmars.2019.00029 Search in Google Scholar

[14] Choi Y. Y., et al. Microalgae Bioenergy with Carbon Capture and Storage (BECCS): An emerging sustainable bioprocess for reduced CO2 emission and biofuel production. Bioresource Technology Reports 2019:7:100270. https://doi.org/10.1016/j.biteb.2019.10027010.1016/j.biteb.2019.100270 Search in Google Scholar

[15] Olguín E. J. Phycoremediation: Key issues for cost-effective nutrient removal processes. Biotechnology Advances 2003:22(1–2):81–91. https://doi.org/10.1016/S0734-9750(03)00130-710.1016/S0734-9750(03)00130-7 Search in Google Scholar

[16] Sunday E. R., Uyi O. J., Caleb O. O. Phycoremediation: an eco-solution to environmental protection and sustainable remediation. Journal of Chemical, Environmental and Biological Engineering. 2018:2(1):5. https://doi.org/10.11648/j.jcebe.20180201.1210.11648/j.jcebe.20180201.12 Search in Google Scholar

[17] Kaloudas D., Pavlova N., Penchovsky R. Phycoremediation of wastewater by microalgae: a review. Environmental Chemistry Letters 2021:19:2905–2920. https://doi.org/10.1007/s10311-021-01203-010.1007/s10311-021-01203-0 Search in Google Scholar

[18] Liu L., Hall G., Champagne P. The role of algae in the removal and inactivation of pathogenic indicator organisms in wastewater stabilization pond systems. Algal Research 2020:46:101777. https://doi.org/10.1016/j.algal.2019.10177710.1016/j.algal.2019.101777 Search in Google Scholar

[19] Khan S. A., et al. Microalgae based biofertilizers: A biorefinery approach to phycoremediate wastewater and harvest biodiesel and manure. Journal of Cleaner Production 2019:211:1412–1419. https://doi.org/10.1016/j.jclepro.2018.11.28110.1016/j.jclepro.2018.11.281 Search in Google Scholar

[20] Javed F., et al. Microalgae-based biofuels, resource recovery and wastewater treatment: A pathway towards sustainable biorefinery. Fuel 2019:255:115826. https://doi.org/10.1016/j.fuel.2019.11582610.1016/j.fuel.2019.115826 Search in Google Scholar

[21] Phang S. M., Chu W. L., Rabiei R. Phycoremediation. The Algae World. Cellular Origin, Life in Extreme Habitats and Astrobiology. Volume 26. Springer, 2015.10.1007/978-94-017-7321-8_13 Search in Google Scholar

[22] Álvarez-Díaz P., et al. Freshwater microalgae selection for simultaneous wastewater nutrient removal and lipid production. Algal Research 2017:24:477–485. https://doi.org/10.1016/j.algal.2017.02.00610.1016/j.algal.2017.02.006 Search in Google Scholar

[23] Priyadharshini S. D., et al. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation. Environmental Pollution 2021:290:117989. https://doi.org/10.1016/j.envpol.2021.11798910.1016/j.envpol.2021.11798934433126 Search in Google Scholar

[24] Li K., et al. Microalgae-based wastewater treatment for nutrients recovery: a review. Bioresource Technology 2019:291:1219334. https://doi.org/10.1016/j.biortech.2019.12193410.1016/j.biortech.2019.12193431395401 Search in Google Scholar

[25] Govindan N., et al. Evaluation of microalgae’s plastic biodeterioration property by a consortium of chlorella sp. and cyanobacteria sp. Environmental Research, Engineering and Management 2021:77(3):86–98. https://doi.org/10.5755/j01.erem.77.3.2531710.5755/j01.erem.77.3.25317 Search in Google Scholar

[26] Wang Q., et al. The toxicity of virgin and UV-aged PVC microplastics on the growth of freshwater algae Chlamydomonas reinhardtii. Science of The Total Environment 2020:749:141603. https://doi.org/10.1016/j.scitotenv.2020.14160310.1016/j.scitotenv.2020.14160332829280 Search in Google Scholar

[27] Hosseini N. S., Shang H., Scott J. A. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems. Renewable and Sustainable Energy Review 2018:92:458–469. https://doi.org/10.1016/j.rser.2018.04.08610.1016/j.rser.2018.04.086 Search in Google Scholar

[28] Xiaogang H., et al. Microalgal growth coupled with wastewater treatment in open and colosed systems for advanced biofuel generation. Biomass Conversion and Biorefinery 2022:12:1939–1958. https://doi.org/10.1007/s13399-020-01061-w10.1007/s13399-020-01061-w Search in Google Scholar

[29] Ra C. H., et al. Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess and Biosystems Engineering 2018:41:457–465. https://doi.org/10.1007/s00449-017-1880-110.1007/s00449-017-1880-129260319 Search in Google Scholar

[30] Conti F., et al. Mixing of a model substrate in a scale-down laboratory digester and processing with a computational fluid dynamics model. 26th European Biomass Conference and Exhibition Proceedings 2018:811–815. https://doi.org/10.5071/26thEUBCE2018-2CV.5.34 Search in Google Scholar

[31] Wiedemann L., et al. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. European Biomass Conference and Exhibition Proceedings 2017:889–892. https://doi.org/10.5071/25thEUBCE2017-2CV.4.14 Search in Google Scholar

[32] Conti F., et al. Effect of mixing of waste biomass in anaerobic digesters for production of biogas. IOP Conference Series: Materials Science and Engineering 2018:446(1):012011. https://doi.org/10.1088/1757-899X/446/1/01201110.1088/1757-899X/446/1/012011 Search in Google Scholar

[33] Hussain F., et al. Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renewable and Sustainable Energy Reviews 2021:137:110603 https://doi.org/10.1016/j.rser.2020.11060310.1016/j.rser.2020.110603 Search in Google Scholar

[34] Chisti Y. Raceways-based Production of Algal Crude Oil. Green 2013:3:195–216. https://doi.org/10.1515/green-2013-001810.1515/green-2013-0018 Search in Google Scholar

[35] Zhao B., Su Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renewable and Sustainable Energy Reviews 2014:31:121–132. https://doi.org/10.1016/j.rser.2013.11.05410.1016/j.rser.2013.11.054 Search in Google Scholar

[36] Kadan Y., et al. In situ electron microscopy characterization of intracellular ion pools in mineral forming microalgae. Journal of Structural Biology 2020:210:1. https://doi.org/10.1016/j.jsb.2020.10746510.1016/j.jsb.2020.10746531981742 Search in Google Scholar

[37] Hauwa M. M., Hayder G., Jagaba A. H. Microalgae: A Renewable Source for Wastewater Treatment and Feedstock Supply for Biofuel Generation. Biointerface Research in Applied Chemistry 2020:11(1):7431–7444. https://doi.org/10.33263/BRIAC111.7431744410.33263/BRIAC111.74317444 Search in Google Scholar

[38] Peng F. Q., et al. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere 2014:95:581–588. https://doi.org/10.1016/j.chemosphere.2013.10.01310.1016/j.chemosphere.2013.10.01324182402 Search in Google Scholar

[39] Petroutsos D., et al. Detoxification of 2,4-dichlorophenol by the marine microalga Tetraselmis marina. Phytochemistry 2008:69(3):707–714. https://doi.org/10.1016/j.phytochem.2007.09.00210.1016/j.phytochem.2007.09.00217936864 Search in Google Scholar

[40] Matamoros V., et al. Behaviour of pharmaceutical products and biodegradation intermediates in horizontal subsurface flow constructed wetland. A microcosm experiment. Science of The Total Environment 2008:394(1):171–176. https://doi.org/10.1016/j.scitotenv.2008.01.02910.1016/j.scitotenv.2008.01.02918280540 Search in Google Scholar

[41] Challis J. K., et al. A critical assessment of the photodegradation of pharmaceuticals in aquatic environments: defining our current understanding and identifying knowledge gaps. Environmental Science: Processes & Impacts 2012:4:672–696. https://doi.org/10.1039/C3EM00615H10.1039/c3em00615h24643336 Search in Google Scholar

[42] Chisti Y. Biodiesel from microalgae. Biotechnology Advances 2007:25(3):294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001.10.1016/j.biotechadv.2007.02.00117350212 Search in Google Scholar

[43] Chen G. Q., Chen F. Growing Phototrophic Cells without Light. Biotechnology Letters 2006:28:607–616. https://doi.org/10.1007/s10529-006-0025-410.1007/s10529-006-0025-416642296 Search in Google Scholar

[44] Andrade M. R., Costa J. A. V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 2007:264(1–4):130–134. https://doi.org/10.1016/j.aquaculture.2006.11.02110.1016/j.aquaculture.2006.11.021 Search in Google Scholar

[45] Zhang J., Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresource Technology 2012:114:529–535. https://doi.org/10.1016/j.biortech.2012.03.05410.1016/j.biortech.2012.03.05422494571 Search in Google Scholar

[46] Yang L., Li H., Wang Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresource Technology 2019:275:35–43. https://doi.org/10.1016/j.biortech.2018.12.03610.1016/j.biortech.2018.12.03630576912 Search in Google Scholar

[47] Ruoyu C., et al. A review on co-cultivation of microalgae with filamentous fungi: Efficient harvesting, wastewater treatment and biofuel production. Renewable and Sustainable Energy Reviews 2021:139:110689. https://doi.org/10.1016/j.rser.2020.11068910.1016/j.rser.2020.110689 Search in Google Scholar

[48] Gomaa M. A., Al-Haj L., Abed R. M. Metabolic engineering of Cyanobacteria and microalgae for enhanced production of biofuels and high-value products. Journal of Applied Microbiology 2016:121(4):919–931. https://doi.org/10.1111/jam.1323210.1111/jam.1323227406848 Search in Google Scholar

[49] Trentini M., Lorenzon M., Conti F. Biotechnology to investigate the microbial community responsible of biogas production from biomass. 26th European Biomass Conference and Exhibition Proceedings 2018:816–820. https://doi.org/10.5071/26thEUBCE2018-2CV.5.35 Search in Google Scholar

[50] Ahmad A. L., et al. Optimization of microalgae coagulation process using chitosan. Chemical Engineering Journal 2011:173(3):879–882. https://doi.org/10.1016/j.cej.2011.07.07010.1016/j.cej.2011.07.070 Search in Google Scholar

[51] Lavoie A., de la Noue J. Harvesting of Scenedesmus obliquus in wastewaters: Auto- or bioflocculation? Biotechnology and Bioengineering 1987:30(7):852–859. https://doi.og/10.1002/bit.26030070710.1002/bit.26030070718581520 Search in Google Scholar

[52] Kumar H. D., Yadava P. K., Gaur J. P. Electrical flocculation of the unicellular green alga Chlorella vulgaris Beijerinck. Aquatic Botany 1981:11:187–195. https://doi.org/10.1016/0304-3770(81)90059-010.1016/0304-3770(81)90059-0 Search in Google Scholar

[53] Uduman N., et al. Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. Journal of Renewable and Sustainable Energy 2010:2:012701. https://doi.org/10.1063/1.329448010.1063/1.3294480 Search in Google Scholar

[54] Gao Y., et al. Montmorillonite–Cu(II)/Fe(III) oxides magnetic material for removal of cyanobacterial Microcystis aeruginosa and its regeneration. Desalination 2009:247(1–3):337–345. https://doi.org/10.1016/j.desal.2008.10.00610.1016/j.desal.2008.10.006 Search in Google Scholar

[55] Kusmayadi A., et al. Microalgae as sustainable food and feed sources for animals and humans – Biotechnological and environmental aspects. Chemosphere 2021:271:129800. https://doi.org/10.1016/j.chemosphere.2021.12980010.1016/j.chemosphere.2021.12980033736224 Search in Google Scholar

[56] Barka A. Blecker C. Microalgae as a potential source of single-cell proteins. A review. Base 2016:2:427–236. https://doi.org/10.25518/1780-4507.1313210.25518/1780-4507.13132 Search in Google Scholar

[57] Christaki E., Bonos E., Florou-Paneri P. Innovative Microalgae Pigments as Functional Ingredients in Nutrition. Handbook of Marine Microalgae 2015:233–243. https://doi.org/10.1016/B978-0-12-800776-1.00014-510.1016/B978-0-12-800776-1.00014-5 Search in Google Scholar

[58] Spolaore P., et al. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 2006:101(2):87–96. https://doi.org/10.1263/jbb.101.8710.1263/jbb.101.8716569602 Search in Google Scholar

[59] Begum H., et al. Availability and Utilization of Pigments from Microalgae. Critical Reviews in Food Science and Nutrition 2016:56(13):2209–2222. https://doi.org/10.1080/10408398.2013.76484110.1080/10408398.2013.76484125674822 Search in Google Scholar

[60] Burca N., Watson R. R. Fish Oil Supplements, Contaminants, and Excessive Doses. In: Omega-3 Fatty Acids in Brain and Neurological Health. Chapter 36. Elsevier, 2014:447–454.10.1016/B978-0-12-410527-0.00036-3 Search in Google Scholar

[61] Barklay W. R. Meager K.M., Abril J. R. Heterothropic production of long chain omega-3 fatty acids utilizing algae and microorganisms. Journal of Applied Phycology 1994:6:123–129. https://doi.org/10.1007/BF0218606610.1007/BF02186066 Search in Google Scholar

[62] Ursin V. M. Modification of Plant Lipids for Human Health: Development of Functional Land-Based Omega-3 Fatty Acids. The Journal of Nutrition 2003:133(12):4271–4274. https://doi.org/10.1093/jn/133.12.427110.1093/jn/133.12.427114652387 Search in Google Scholar

[63] Barbosa M. J., et al. Microalgae cultivation in air-lift reactors: Modelling biomass yield and growth rate as a function of mixing frequency. Biotechnology and Bioengineering 2003:82(2):170–179. https://doi.org/10.1002/bit.1056310.1002/bit.1056312584758 Search in Google Scholar

[64] Renuka N., et al. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research 2012:23:6608–6620. https://doi.org/10.1007/s11356-015-5884-610.1007/s11356-015-5884-626638970 Search in Google Scholar

[65] Fradique M., et al. Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source. LWT - Food Science and Technology 2013:50(1):312–319. https://doi.org/10.1016/j.lwt.2012.05.00610.1016/j.lwt.2012.05.006 Search in Google Scholar

[66] Battacharjee M. Pharmaceutically Valuable Bioactive Compounds of Algae. Asian Journal of Pharmaceutical and Clinical Research 2016:9(6):43–47. https://doi.org/10.22159/ajpcr.2016.v9i6.1450710.22159/ajpcr.2016.v9i6.14507 Search in Google Scholar

[67] Kamyab H., et al. Improved production of lipid contents by cultivating Chlorella pyrenoidosa in heterogeneous organic substrates. Clean Technologies and Environmental Policy 2019:21:1969–1978. https://doi.org/10.1007/s10098-019-01743-810.1007/s10098-019-01743-8 Search in Google Scholar

[68] Baldev E., et al. Wastewater as an economical and ecofriendly green medium for microalgal biofuel production. Fuel 2021:294:120484. https://doi.org/10.1016/j.fuel.2021.12048410.1016/j.fuel.2021.120484 Search in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other