1. bookVolumen 26 (2022): Edición 1 (January 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2255-8837
Primera edición
26 Mar 2010
Calendario de la edición
2 veces al año
Idiomas
Inglés
access type Acceso abierto

PCM Modified Gypsum Hempcrete with Increased Heat Capacity for Nearly Zero Energy Buildings

Publicado en línea: 28 Jul 2022
Volumen & Edición: Volumen 26 (2022) - Edición 1 (January 2022)
Páginas: 524 - 534
Detalles de la revista
License
Formato
Revista
eISSN
2255-8837
Primera edición
26 Mar 2010
Calendario de la edición
2 veces al año
Idiomas
Inglés
Abstract

Low energy building materials based on natural and renewable resources have become popular among customers. The natural occurrence of the raw materials and the idea to move closer to nature with its natural products have brought high interest in hempcrete. Hempcrete is a kind of binder-aggregate material where besides mineral binder, hemp shive aggregate act as a filler. A good technical performance of such composites has been reported before, while the term an ‘advanced material’ for traditional hempcrete lacks some superior properties for civil engineers. This research offers advanced hempcrete-type material where gypsum binder and hemp shives are used as the main components. Additionally, phase change material (PCM) was incorporated into the mixture composition to increase their thermal mass. PCM gives additional thermal heat storage for buildings which makes the building envelope more homogenous regarding thermal stability under outer temperature fluctuations. This could give additional comfort during heating and cooling seasons. Up to 20 wt.% of microencapsulated PCM suspension had been added to the hempcrete mixture composition and heat capacity was calculated and validated with differential scanning calorimetry measurements. Physical and mechanical performance was also evaluated. Results indicate that in the temperature interval from 20 to 30 °C, the heat capacity of hempcrete can be increased to 1901 J/(gK) (by 70.4 %) and it correlates well with theoretical thermal mass calculation. This gives promising results for further development of the material and proves the feasibility of PCM integration in hempcrete.

Keywords

[1] Pacheco-Torgal F. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 2014:51:151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058 Search in Google Scholar

[2] Sinka M., Korjakins A., Bajare D., Zimele Z., Sahmenko G. Bio-based construction panels for low carbon development. Energy Procedia 2018:147:220–226. https://doi.org/10.1016/j.egypro.2018.07.063 Search in Google Scholar

[3] Le A. T., Gacoin A., Li A., Mai T. H., El Wakil N. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Compos. Part B Eng. 2015:75:201–211. https://doi.org/10.1016/j.compositesb.2015.01.038 Search in Google Scholar

[4] Bumanis G., Vitola L., Pundiene I., Sinka M., Bajare D. Gypsum, geopolymers, and starch-alternative binders for bio-based building materials: A review and life-cycle assessment. Sustain. 2020:12(14):5666. https://doi.org/10.3390/su12145666 Search in Google Scholar

[5] Nováková P. Use of technical hemp in the construction industry. MATEC Web of Conferences 2018:146. https://doi.org/10.1051/matecconf/201814603011 Search in Google Scholar

[6] Maalouf C., Moussa T., Umurigirwa B. S., Mai T. H. Hygrothermal behavior of a hemp-starch composite for roof applications. Proceedings of 14th International Conference of IBPSA – Building Simulation 2015:618–625.10.26868/25222708.2015.2145 Search in Google Scholar

[7] Bardage S. L. Performance of buildings. Performance of Bio-based Building Materials 2017:335–383. https://doi.org/10.1016/B978-0-08-100982-6.00006-9 Search in Google Scholar

[8] Tyagi V. V., Kaushik S. C., Tyagi S. K., Akiyama T. Development of phase change materials based microencapsulated technology for buildings: A review. Renewable and Sustainable Energy Reviews 2011:15(2):1373–1391. https://doi.org/10.1016/j.rser.2010.10.006 Search in Google Scholar

[9] Cabeza L. F., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O. Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 2007:39(2):113–119. https://doi.org/10.1016/j.enbuild.2006.03.030 Search in Google Scholar

[10] Schossig P., Henning H. M., Gschwander S., Haussmann T. Micro-encapsulated phase-change materials integrated into construction materials. Solar Energy Materials and Solar Cells 2005:89(2–3):297–306. https://doi.org/10.1016/j.solmat.2005.01.017 Search in Google Scholar

[11] Socaciu L., Pleşa A., Giurgiu O. Review on phase change materials for building applications. 2014. [Online]. [Accessed 14 March 2022]. Available: https://www.semanticscholar.org/paper/Review-on-phase-change-materials-for-building-Socaciu-Ple%C5%9Fa/3c17380902ea0187215f4bf18230a13459215592 Search in Google Scholar

[12] Koschenz M., Lehmann B. Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 2004:36(6):567–578. https://doi.org/10.1016/j.enbuild.2004.01.029 Search in Google Scholar

[13] Arce Maldonado P. Application of passive thermal energy storage in buildings using PCM and awnings. Chem. Eng. Sci. 2011:60(6):1535–1553. Search in Google Scholar

[14] Zhou D., Zhao C. Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 2012:92:593–605. https://doi.org/10.1016/j.apenergy.2011.08.025 Search in Google Scholar

[15] Kirilovs E., Zotova I., Gendelis S., Jörg-Gusovius H., Kukle S., Stramkale V. Experimental study of using micro-encapsulated phase-change material integrated into hemp shive wallboard. Buildings 2020:10(12):228. https://doi.org/10.3390/buildings10120228 Search in Google Scholar

[16] Stevulova N., Kidalova L., Cigasova J., Junak J., Sicakova A., Terpakova E. Lightweight composites containing hemp hurds. Procedia Engineering 2013:65:69–74. https://doi.org/10.1016/j.proeng.2013.09.013 Search in Google Scholar

[17] Shukla N., Kosny J. DHFMA Method for Dynamic Thermal Property Measurement of PCM-integrated Building Materials. Curr. Sustain. Renewable Energy Reports 2015:2(2):41–46. https://doi.org/10.1007/s40518-015-0025-x Search in Google Scholar

[18] Abdellatef Y., Khan M. A., Khan A., Alam M. I., Kavgic M. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Materials 2020:13(21):5000. https://doi.org/10.3390/ma13215000766418833171950 Search in Google Scholar

[19] Nováková P. Use of technical hemp in the construction industry. MATEC Web of Conferences 2018:146. https://doi.org/10.1051/matecconf/201814603011 Search in Google Scholar

[20] Brzyski P., Gładecki M., Rumińska M., Pietrak K., Kubiś M., Łapka P. Influence of hemp shives size on hygro-thermal and mechanical properties of a hemp-lime composite. Materials (Basel). 2020:13(23):1–17. https://doi.org/10.3390/ma13235383773085833260830 Search in Google Scholar

[21] Manzello S. L., Park S.-H., Bentz D. P., Mizukami T. Measurement of Thermal Properties of Gypsum Board at Elevated Temperatures. Proceedings of the 5th International Conference on Structures in Fire 2004:656–665. Nanyang Technological University, Singapore. 2008. Search in Google Scholar

[22] Brewer P. G., Peltzer E. T. The Molecular Basis for the Heat Capacity and Thermal Expansion of Natural Waters. Geophys. Res. Lett. 2019:46(22):13227–13233. https://doi.org/10.1029/2019GL085117 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo