Cite

[1] Fagioli F. F., Paolotti L., Boggia A. Trends in Environmental Management Systems Research. A Content Analysis. Environmental and Climate Technologies 2022:26(1):46–63. https://doi.org/10.2478/rtuect-2022-000510.2478/rtuect-2022-0005 Search in Google Scholar

[2] Pięta P., et al. Multi-domain model for simulating smart IoT-based theme parks. Proc. SPIE (Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments) 2018:10808. https://doi.org/10.1117/12.250165910.1117/12.2501659 Search in Google Scholar

[3] Chomać-Pierzecka E., et al. Analysis and Evaluation of the Photovoltaic Market in Poland and the Baltic States. Energies 2022:15(2):669. https://doi.org/10.3390/en1502066910.3390/en15020669 Search in Google Scholar

[4] Wilk-Jakubowski G. Wpływ technologii informatyczno-komunikacyjnych na funkcjonowanie współczesnych społeczeństw. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne (The influence of information and communication technologies on the functioning of modern societies. The role of computer science in economic and social sciences. Innovations and interdisciplinary implications.). Kielce: Publishing House of the University of Economics Bolesław Markowski in Kielce, 2011. (in Polish) Search in Google Scholar

[5] Felis J., Kasprzyk S. Akustyczna metoda usuwania osadów pyłowych w kotłach energetycznych (Acoustic method of removing dust deposits in power boilers). Presented at XV National Scientific-Didactic Conference of Theory of Machines and Mechanisms, Białystok-Białowieża, Poland, 1996. (in Polish) Search in Google Scholar

[6] Węsierski T., Wilczkowski S., Radomiak H. Wygaszanie procesu spalania przy pomocy fal akustycznych (Extinguishing the combustion process with acoustic waves.). Bezpieczeństwo i Technika Pożarnicza 2013:30(2):59–64. (in Polish) Search in Google Scholar

[7] Wilczkowski S. Poszukiwanie nowych sposobów gaszenia pożarów (Searching for new ways to extinguish fires.). BiT Nauka i Technika Pożarnicza. Józefów: Wydawnictwo CNBOP-PIB, 1988. (in Polish) Search in Google Scholar

[8] Shevchenko R. I., et al. Review of up-to-date approaches for extinguishing oil and petroleum products. SOCAR Proceedings 2021:SI1:169–174. https://doi.org/10.5510/OGP2021SI10051910.5510/OGP2021SI100519 Search in Google Scholar

[9] Wilk-Jakubowski J. Analysis of Flame Suppression Capabilities Using Low-Frequency Acoustic Waves and Frequency Sweeping Techniques. Symmetry 2021:13(7):1299. https://doi.org/10.3390/sym1307129910.3390/sym13071299 Search in Google Scholar

[10] Wilczkowski S. Środki gaśnicze (Extinguishing media.). Kraków: Szkoła Aspirantów Państwowej Straży Pożarnej, 1995. (in Polish) Search in Google Scholar

[11] Loboichenko V., et al. Comparative Analysis of the Influence of Various Dry Powder Fire Extinguishing Compositions on the Aquatic Environment. Water and Energy International 2019:62(7):63–68. Search in Google Scholar

[12] Gurbanova M., et al. Effect of inorganic components of fire foaming agents on the aquatic environment. Journal of the Turkish Chemical Society, Section A: Chemistry 2020:7(3):833–844. https://doi.org/10.18596/jotcsa.78572310.18596/jotcsa.785723 Search in Google Scholar

[13] Dadashov I., Loboichenko V., Kireev A. Analysis of the ecological characteristics of environment friendly fire fighting chemicals used in extinguishing oil products. Pollution Research 2018:37(1):63–77. Search in Google Scholar

[14] Loboichenko V., et al. Review of the Environmental Characteristics of Fire Extinguishing Substances of Different Composition used for Fires Extinguishing of Various Classes. Journal of Engineering and Applied Sciences 2019:14(16):5925–5941. https://doi.org/10.36478/jeasci.2019.5925.594110.36478/jeasci.2019.5925.5941 Search in Google Scholar

[15] Gurbanova М., et al. Comparative assessment of the ecological characteristics of auxiliary organic compounds in the composition of foaming agents used for firefighting. Bulletin of the Georgian National Academy of Sciences 2020:14(4):58–66. Search in Google Scholar

[16] Dadashov I. F., et al. About the environmental characteristics of fire extinguishing substances used in extinguishing oil and petroleum products. SOCAR Proceedings 2020:1:79–84. https://doi.org/10.5510/OGP2020010042610.5510/OGP20200100426 Search in Google Scholar

[17] Lazaruk Y., Karabyn V. Shale gas in Western Ukraine: Perspectives, resources, environmental and technogenic risk of production. Pet Coal 2020:62(3):836–844. Search in Google Scholar

[18] Rusyn I. B., et al. Biodegradation of oil hydrocarbons by Candida yeast. Mikrobiolohichnyi Zhurnal 2003:65(6):36–42. Search in Google Scholar

[19] Siwik K. Dźwiękiem gaszą ogień. Niezwykły wynalazek Polaków (They put out the fire with a sound. An unusual invention of Poles) [Online]. [Accessed 02.06.2020]. Available: https://www.ckm.pl/m/lifestyle/dzwiekiem-gaszaogien-niezwykly-wynalazek-polakow,23571,a.html (in Polish) Search in Google Scholar

[20] Orkisz-Gola J. To może być przełom w pożarnictwie. Kielecki naukowiec zastąpił gaśnice... głośnikiem (This could be a breakthrough in firefighting. A scientist from Kielce replaced the fire extinguishers with ... a loudspeaker) [Online]. [Accessed 03.06.2020]. Available: https://kielce.tvp.pl/48364339/to-moze-byc-przelom-w-pozarnictwie-kieleckinaukowiec-zastapil-gasnice-glosnikiem (in Polish) Search in Google Scholar

[21] Angora. Dźwiękowa gaśnica (Sound extinguisher) [Online]. [Accessed 21.06.2020]. Available: https://www.pressreader.com/poland/angora/20200621/282230897934076 (in Polish) Search in Google Scholar

[22] Eska Rock. Polacy zgasili ogień dźwiękiem! Oto nowy wynalazek z Politechniki Świętokrzyskiej (Poles put out the fire with a sound! Here is a new invention from the Kielce University of Technology) [Online]. [Accessed 04.06.2020]. Available: https://www.eskarock.pl/rozrywka/polacy-zgasili-ogien-dzwiekiem-oto-nowy-wynalazek-z-politechnikiswietokrzyskiej-aa-gTin-qmqs-w2KD.html (in Polish) Search in Google Scholar

[23] Poljskaja Nauka. Uchenij Keltskogo tehnologicheskogo universiteta razrabotal innovacionnij akusticheskih ognetushitelj (A scientist from the Kielce University of Technology has developed an innovative acoustic fire extinguisher) [Online]. [Accessed 08.06.2020]. Available: http://polishscience.pl/ru/ученый-кельцкого-технологического-у (in Russian) Search in Google Scholar

[24] Krumov K. Ucheni ot Blgarija I Polsha sjzdadoha umen pozharogasitelj (Scientists from Bulgaria and Poland have created a smart fire extinguisher) [Online]. [Accessed 05.06.2020]. https://www.monitor.bg/bg/a/view/ucheni-otbylgarija-i-polsha-syzdadoha-umen-pojarogasitel-206283 (in Bulgarian) Search in Google Scholar

[25] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. Control of acoustic extinguisher with Deep Neural Networks for fire detection. Elektronika ir Elektrotechnika 2022:28(1):52–59. https://doi.org/10.5755/j02.eie.2474410.5755/j02.eie.24744 Search in Google Scholar

[26] Levterov A. Identification of a technogenic emergency on the acoustic radiation of a hazard zone. Municipal economy of cities 2019:5(151):100–106. Search in Google Scholar

[27] Levterov A. Identification model development of the burning substance in the zone of the burning seat. Problems of Fire Safety 2019:45:92–97. Search in Google Scholar

[28] Levterov A. A. Acoustic Research Method for Burning Flammable Substances. Acoustical Physics 2019:65(4):444–449. https://doi.org/10.1134/S106377101904010910.1134/S1063771019040109 Search in Google Scholar

[29] Kalugin V. D., Levterov O. A., Tutiunik V. V. The method of early detection of the source of ignition. UA Patent 127254, 2018. Search in Google Scholar

[30] Kalugin V. D., Levterov O. A., Tutiunik V. V. Method of extinguishing a fire. UA Patent 137790, 2019. Search in Google Scholar

[31] Kordylewski W. Spalanie i paliwa (Burning and fuel). Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2008. (in Polish) Search in Google Scholar

[32] Niegodajew P., et al. Application of acoustic oscillations in quenching of gas burner flame. Combustion and Flame 2018:194:245–249. https://doi.org/10.1016/j.combustflame.2018.05.00710.1016/j.combustflame.2018.05.007 Search in Google Scholar

[33] Kowalewicz A. Podstawy procesów spalania (Basics of combustion processes.). Warsaw: Wydawnictwo Naukowo-Techniczne, 2000. (in Polish) Search in Google Scholar

[34] Im H. G., Law C. K., Axelbaum R. L. Opening of the Burke-Schumann Flame Tip and the Effects of Curvature on Diffusion Flame Extinction. Proceedings of the Combustion Institute 1990:23(1):551–558. https://doi.org/10.1016/S0082-0784(06)80302-410.1016/S0082-0784(06)80302-4 Search in Google Scholar

[35] Radomiak H., et al. Gaszenie płomienia dyfuzyjnego przy pomocy fal akustycznych (Diffusion flame extinguishing with acoustic waves.). Bezpieczeństwo i Technika Pożarnicza 2015:40(4):29–38. (in Polish) https://doi.org/10.12845/bitp.40.4.2015.210.12845/bitp.40.4.2015.2 Search in Google Scholar

[36] Roczniak M. Fizyka hałasu. Część I. Podstawy akustyki ośrodków gazowych (Noise physics. Part I. Fundamentals of acoustics of gas centers.). Gliwice: Wydawnictwo Politechniki Śląskiej, 1996. (in Polish) Search in Google Scholar

[37] Vovchuk T. S., et al. Investigation of the use of the acoustic effect in extinguishing fires of oil and petroleum products. SOCAR Proceedings 2021:2:24–31. https://doi.org/10.5510/OGP2021SI20060210.5510/OGP2021SI200602 Search in Google Scholar

[38] Marek M. Wykorzystanie ekonometrycznego modelu klasycznej funkcji regresji liniowej do przeprowadzenia analiz ilościowych w naukach ekonomicznych. Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne (The use of an econometric model of the classical linear regression function to carry out quantitative analyzes in economic sciences. The role of computer science in economic and social sciences. Innovations and interdisciplinary implications.). Kielce: Wydawnictwo Wyższej Szkoły Handlowej im. Bolesława Markowskiego w Kielcach, 2013. (in Polish) Search in Google Scholar

[39] Marek M. Aspects of Road Safety: A Case of Education by Research –Analysis of Parameters Affecting Accident. Presented at The Education and Research in the Information Society Conference (ERIS), CEUR Workshop Proceedings 2021:3061:64–75. [Online]. [Accessed 12.02.2022] http://ceur-ws.org/Vol-3061/ERIS_2021-art07(reg).pdf Search in Google Scholar

[40] Marek M. Bayesian regression model estimation: a road safety. Presented at The Sixth Smart City Applications International Conference (SCA 2021). Lecture Notes in Networks and Systems 2021:393. https://doi.org/10.1007/978-3-030-94191-8_1310.1007/978-3-030-94191-8_13 Search in Google Scholar

[41] Yılmaz-Atay H., Wilk-Jakubowski J. A Review of Novel Approach for the Fire Resistance of Chemical Materials: from Basic Science to Innovations. Polymers 2022:14(6):1224. https://doi.org/10.3390/polym1406122410.3390/polym14061224895481135335554 Search in Google Scholar

[42] Chen L. W., Zhang Y. Experimental observation of the nonlinear coupling of flame flow and acoustic wave. Flow Measurement and Instrumentation 2015:46:12–17. https://doi.org/10.1016/j.flowmeasinst.2015.09.00110.1016/j.flowmeasinst.2015.09.001 Search in Google Scholar

[43] Niegodajew P., et al. Application of acoustic oscillations in flame extinction in a presence of obstacle. Presented at XXIII Fluid Mechanics Conference (KKMP 2018). IOP Conf. Series Journal of Physics (Conf. Series 1101), 2018. https://doi.org/10.1088/1742-6596/1101/1/01202310.1088/1742-6596/1101/1/012023 Search in Google Scholar

[44] Defense Advanced Research Projects Agency. DARPA sound based fire extinguisher [Online]. [Accessed 16.07.2012]. Available: https://www.extremetech.com/extreme/132859-darpa-creates-sound-based-fire-extinguisher Search in Google Scholar

[45] Stawczyk P., Wilk-Jakubowski J. Non-invasive attempts to extinguish flames with the use of high-power acoustic extinguisher. Open Engineering 2021:11(1):349–355. https://doi.org/10.1515/eng-2021-003710.1515/eng-2021-0037 Search in Google Scholar

[46] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves). PL Patent 427999, 2019. (in Polish) Search in Google Scholar

[47] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves). PL Patent 428002, 2019. (in Polish) Search in Google Scholar

[48] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (System for suppressing flames by acoustic waves). PL Small Patent (utility model) 70441, 2018. (in Polish) Search in Google Scholar

[49] Wilk-Jakubowski J. Urządzenie do gaszenia płomieni falami akustycznymi (Device for flames suppression with acoustic waves). PL Patent 234266, 2019. (in Polish) Search in Google Scholar

[50] Lippold A. Device and circuit for the generation of vortex rings. U. S. Patent 4735282, 1988. Search in Google Scholar

[51] Thigpen H. D. Remote lighted wick extinguisher. U. S. Patent 5899685, 1999. Search in Google Scholar

[52] Formigoni P. O. Process of extinction, expansion and controlling of fire flames thru acoustic. U. S. Patent 20100203460, 2010. Search in Google Scholar

[53] Tran V., Robertson S. Methods and systems for disrupting phenomena with waves. U. S. Patent 10569115, 2020. Search in Google Scholar

[54] Wilk-Jakubowski J., et al. The using of Deep Neural Networks and natural mechanisms of acoustic waves propagation for extinguishing flames. International Journal of Computational Vision and Robotics 2022:12(2):101–119. https://doi.org/10.1504/IJCVR.2021.1003705010.1504/IJCVR.2022.121166 Search in Google Scholar

[55] Wilk-Jakubowski J., Stawczyk P., Ivanov S., Stankov S. High-power acoustic fire extinguisher with artificial intelligence platform. International Journal of Computational Vision and Robotics 2022:12(3):236–249. https://doi.org/10.1504/IJCVR.2022.12258010.1504/IJCVR.2022.122580 Search in Google Scholar

[56] Karimi N. Response of a conical, laminar premixed flame to low amplitude acoustic forcing – a comparison between experiment and kinematic theories. Energy 2014:78:490–500. https://doi.org/10.1016/j.energy.2014.10.03610.1016/j.energy.2014.10.036 Search in Google Scholar

[57] Magina N., et al. Spatio-temporal evolution of harmonic disturbances on laminar, non-premixed flames: Measurements and analysis. Combustion and Flame 2017:180:262–275. https://doi.org/10.1016/j.combustflame.2016.09.00110.1016/j.combustflame.2016.09.001 Search in Google Scholar

[58] Kashinath K., Waugh I. C., Juniper M. P. Nonlinear self-excited thermoacoustic oscillations of a ducted premixed flame: bifurcations and routes to chaos. Journal of Fluid Mechanics 2014:761:399–430. https://doi.org/10.1017/jfm.2014.60110.1017/jfm.2014.601 Search in Google Scholar

[59] Kozlov V. V., et al. Combustion of hydrogen in round and plane microjets in transverse acoustic field at small Reynolds numbers as compared to propane combustion in the same conditions. International Journal of Hydrogen Energy 2016:41(44):20231–20239. https://doi.org/10.1016/j.ijhydene.2016.07.27610.1016/j.ijhydene.2016.07.276 Search in Google Scholar

[60] Leśniak B., Wilczkowski S. Próby zastosowania fal akustycznych do hamowania procesów spalania (Attempts to use acoustic waves to inhibit combustion processes.). Józefów: Wydawnictwo CNBOP-PIB, 1988. (in Polish) Search in Google Scholar

[61] Simon D. M., Wagner P. Characteristics of turbulent combustion by flame space and space heating. Journal of Industrial and Engineering Chemistry 1956:48(1):129–133. https://doi.org/10.1021/ie50553a03810.1021/ie50553a038 Search in Google Scholar

[62] Im H. G., Law C. K., Axelbaum R. L. Opening of the burke-schumann flame tip and the effects of curvature on diffusion flame extinction. Symposium on Combustion 1991:23(1):551–558. https://doi.org/10.1016/S0082-0784(06)80302-410.1016/S0082-0784(06)80302-4 Search in Google Scholar

[63] Kornilov V. N., Schreel K., De Goey L. P. H. Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proceedings of the Combustion Institute 2007:31(1):1239–1246. https://doi.org/10.1016/j.proci.2006.07.07910.1016/j.proci.2006.07.079 Search in Google Scholar

[64] Zambon A. C., Chelliah H. K. Acoustic-wave interactions with counterflow single- and twin-premixed flames: finite-rate kinetics, heat release and phase effects. Proceedings of the Combustion Institute 2007:31(1):1247–1255. https://doi.org/10.1016/j.proci.2006.07.15610.1016/j.proci.2006.07.156 Search in Google Scholar

[65] Lentati A. M., Chelliah H. K. Physical, thermal and chemical effects of fine-water droplets in extinguishing counterflow diffusion flames. Symposium on Combustion 1998:27(2):2839–2846. https://doi.org/10.1016/S0082-0784(98)80142-210.1016/S0082-0784(98)80142-2 Search in Google Scholar

[66] Blaszczyk J. Acoustically disturbed fuel droplet combustion. Fuel 1991:70(9):1023–1025. https://doi.org/10.1016/0016-2361(91)90254-810.1016/0016-2361(91)90254-8 Search in Google Scholar

[67] Šerić L., Stipanicev D., Krstinić D. ML/AI in Intelligent Forest Fire Observer Network. Presented at International Conference on Management of Manufacturing Systems (Conference 3rd EAI 2018), Dubrovnik, Croatia, 2018. https://doi.org/10.4108/eai.6-11-2018.227968110.4108/eai.6-11-2018.2279681 Search in Google Scholar

[68] Šerić L., Stipaničev D., Štula M. Observer network and forest fire detection. Information Fusion 2011:12(3):160–175. https://doi.org/10.1016/j.inffus.2009.12.00310.1016/j.inffus.2009.12.003 Search in Google Scholar

[69] Wilk-Jakubowski G. Normative Dimension of Crisis Management System in the Third Republic of Poland in an International Context. Organizational and Economic Aspects. Łódź-Warszawa: Wydawnictwo Społecznej Akademii Nauk, 2019. Search in Google Scholar

[70] Wilk-Jakubowski G., Harabin R., Ivanov S. Robotics in crisis management: a review. Technology in Society 2022:68:101935. https://doi.org/10.1016/j.techsoc.2022.10193510.1016/j.techsoc.2022.101935 Search in Google Scholar

[71] Wilk-Jakubowski G., Harabin R., Wilk-Jakubowski J. Non-governmental organizations in crisis management: a review of the literature. Busko-Zdroj–Kielce, Poland, 2022 (unpublished).10.1016/j.techsoc.2022.101935 Search in Google Scholar

[72] Eguchi S., et al. Multi-mode portable VSAT for disaster-resilient wireless networks. Presented at Asia Pacific Microwave Conference (APMC 2014), Sendai, Japan, 2014. Search in Google Scholar

[73] Kameda S., et al. Development of satellite-terrestrial multi-mode VSAT using software defined radio technology. Presented at Asia Pacific Microwave Conference (APMC 2014), Sendai, Japan, 2014. Search in Google Scholar

[74] Wilk-Jakubowski J. Information systems engineering using VSAT networks. Yugoslav Journal of Operations Research 2021:31(3):409–428. https://doi.org/10.2298/YJOR200210.2298/YJOR200215015W Search in Google Scholar

[75] Wilk-Jakubowski J. Overview of broadband information systems architecture for crisis management. Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska – IAPGOS (Informatics, Control, Measurement in Economy and Environmental Protection) 2020:10(2):20–23. https://doi.org/10.35784/iapgos.160810.35784/iapgos.1608 Search in Google Scholar

[76] Sasanuma M., et al. Research and development of very small aperture terminals (VSAT) that can be installed by easy operation during disasters – Issues and the solutions for implementing simple and easy installation of VSAT earth station. Japan: The Institute of Electronics, Information and Communication Engineers (IEICE), 2013. Search in Google Scholar

[77] Wilk-Jakubowski J. Measuring Rain Rates Exceeding the Polish Average by 0.01%. Pol. J. Environ. Stud. 2018:27(1):383–390. https://doi.org/10.15244/pjoes/7390710.15244/pjoes/73907 Search in Google Scholar

[78] Wilk-Jakubowski J. Predicting Satellite System Signal Degradation due to Rain in the Frequency Range of 1 to 25 GHz. Pol. J. Environ. Stud. 2018:27(1):391–396. https://doi.org/10.15244/pjoes/7390610.15244/pjoes/73906 Search in Google Scholar

[79] Wilk-Jakubowski J. Total Signal Degradation of Polish 26-50 GHz Satellite Systems Due to Rain. Pol. J. Environ. Stud. 2018:27(1):397–402. https://doi.org/10.15244/pjoes/7517910.15244/pjoes/75179 Search in Google Scholar

[80] Loboichenko V., et al. Assessment of the Impact of Natural and Anthropogenic Factors on the State of Water Objects in Urbanized and Non-Urbanized Areas in Lozova District (Ukraine). Ecological Engineering & Environmental Technology 2021:22(2):59–66. https://doi.org/10.12912/27197050/13333310.12912/27197050/133333 Search in Google Scholar

[81] Ivanov S., et al. The using of Deep Neural Networks and acoustic waves modulated by triangular waveform for extinguishing fires. Presented at International Workshop on New Approaches for Multidimensional Signal Processing (NAMSP 2020), Technical University of Sofia, Sofia, Bulgaria, 2020. New Approaches for Multidimensional Signal Processing (‘Smart Innovation, Systems and Technologies’ series) 2021:216:207–218. https://doi.org/10.1007/978-981-33-4676-5_1610.1007/978-981-33-4676-5_16 Search in Google Scholar

[82] Janků P., Komínková–Oplatková Z., Dulík T. Fire detection in video stream by using simple artificial neural network. Mendel 2018:24(2):55–60. https://doi.org/10.13164/mendel.2018.2.05510.13164/mendel.2018.2.055 Search in Google Scholar

[83] Szegedy Ch., Toshev A., Erhan D. Deep Neural Networks for Object Detection. Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS’13) [Online]. [Accessed 10.03.2022]. Available: https://papers.nips.cc/paper/2013/hash/f7cade80b7cc92b991cf4d2806d6bd78-Abstract.html Search in Google Scholar

[84] Foley D., O’Reilly R. An Evaluation of Convolutional Neural Network Models for Object Detection in Images on Low-End Devices. Proceedings for the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science [Online]. [Accessed 10.03.2022]. Available: http://ceur-ws.org/Vol-2259/aics_32.pdf Search in Google Scholar

[85] Kurup R. Vision Based Fire Flame Detection System Using Optical flow Features and Artificial Neural Network. International Journal of Science and Research 2014:3(10):2161–2168. Search in Google Scholar

[86] Zhang, X. Simple understanding of Mask RCNN [Online]. [Accessed 22.04.2018]. Available: https://medium.com/@alittlepain833/simple-understanding-of-mask-rcnn-134b5b330e95 Search in Google Scholar

[87] Ivanov S., Stankov S. Acoustic Extinguishing of Flames Detected by Deep Neural Networks in Embedded Systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2021:XLVI-4/W5-2021:307–312. https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-307-202110.5194/isprs-archives-XLVI-4-W5-2021-307-2021 Search in Google Scholar

[88] Ivanov S., Stankov S. The Artificial Intelligence Platform with the Use of DNN to Detect Flames: A Case of Acoustic Extinguisher. Lecture Notes in Networks and Systems 2022:371:24–34. https://doi.org/10.1007/978-3-030-93247-3_310.1007/978-3-030-93247-3_3 Search in Google Scholar

[89] Wilk-Jakubowski J., et al. Analysis of Environmentally Friendly Acoustic Firefighting and Fire Detection Systems on the Basis of Central and Eastern Europe Research Considering COVID-19 Times. Kielce-Gabrovo-Busko-Zdroj, Poland-Bulgaria, 2022 (unpublished). Search in Google Scholar

[90] Sai R. T., Sharma G. Sonic Fire Extinguisher. Pramana Research Journal 2017:8:337–346. Search in Google Scholar

[91] Tempest W. Infrasound and Low Frequency Vibration. London: Academic Press Inc., 1976. Search in Google Scholar

[92] Noga A. Przegląd obecnego stanu wiedzy z zakresu techniki infradźwiękowej i możliwości wykorzystania fal akustycznych do oczyszczania urządzeń energetycznych (Review of the current state of knowledge in the field of infrasound technology and the possibility of using acoustic waves for cleaning energy devices.). Zeszyty Energetyczne 2014:1:225–234. (in Polish) Search in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other