Cite

[1] García J., et al. Nutrient removal from agricultural run-off in demonstrative full scale tubular photobioreactors for microalgae growth. Ecological Engineering 2018:120:513–521.10.1016/j.ecoleng.2018.07.002 Search in Google Scholar

[2] Randrianarison G., Ashraf M. A. Microalgae: a potential plant for energy production. Geology, Ecology, and Landscapes 2017:1(2):104–120.10.1080/24749508.2017.1332853 Search in Google Scholar

[3] Ramanna L., et al. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresource Technology 2014:168:127–135.10.1016/j.biortech.2014.03.06424768415 Search in Google Scholar

[4] Romagnoli F., et al. Novel Stacked Modular Open Raceway Ponds for Microalgae Biomass Cultivation in Biogas Plants: Preliminary Design and Modelling. Environmental and Climate Technologies 2020:24(2):1–19.10.2478/rtuect-2020-0050 Search in Google Scholar

[5] Gonzalez-Fernandez C., Munoz R. Microalgae-Based Biofuels and Bioproducts. Elsevier, 2017. Search in Google Scholar

[6] Campbell P., K., Beer T., Batten D. Life cycle assessment of biodiesel production from microalgae in ponds. Bioresource Technology 2011:102(1):50–56.10.1016/j.biortech.2010.06.04820594828 Search in Google Scholar

[7] Steele D. J. Cellular viability and the occurence and significance of chlorophyll allomers during phytoplankton turnover. Doctorate Thesis. Bournemouth: Bournemouth University, 2014. Search in Google Scholar

[8] Ievina B., Romagnoli F. Influence of temperature on the growth of microalgae Chlorella vulgaris in laboratory batch cultures. Presented at the International Conference - Sustainability and Resilience. 2020. Search in Google Scholar

[9] Universidad De Almaria. Microalgal Biotechnology. Microalgal Growth Kinetics. 2014 [Online]. [Accessed 9.04.2021]. Available: https://w3.ual.es/~jfernand/MBio70411204/Lesson2/L2.1.html Search in Google Scholar

[10] Tebbani S., et al. CO2 Biofixation by Microalgae: Modeling, Estimation and Control. 1st Edition. GB, US: ISTE Ltd, John Wiley & Sons, 2014. Search in Google Scholar

[11] Richmond A., and Hu Q. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd Edition. Hoboken: Wiley-Blackwell, 2013.10.1002/9781118567166 Search in Google Scholar

[12] Musa M., et al. Factors Affecting Microalgae Production for Biofuels and the Potentials of Chemometric Methods in Assessing and Optimizing Productivity. Cells 2019:8(8):851. https://doi.org/10.3390/cells808085110.3390/cells8080851672173231394865 Search in Google Scholar

[13] Geider R., Osborne B. Algal Photosynthesis. 1st Edition. US: Springer, 1992.10.1007/978-1-4757-2153-9_1 Search in Google Scholar

[14] Lutzu G. Analysis of the growth of microalgae in batch and semi-batch photobioreactors. Doctorate Thesis. Cagliari: Cagliari University, 2012. Search in Google Scholar

[15] Lee E., Jalalizadeh M., Zhang Q. Growth kinetic models for microalgae cultivation: A review. Algal Research 2015:12:497–512. https://doi.org/10.1016/j.algal.2015.10.00410.1016/j.algal.2015.10.004 Search in Google Scholar

[16] Monod J. The growth of bacterial cultures. Annu. Rev. Microbiol. 1949:3(1):371–394. https://doi.org/10.1146/annurev.mi.03.100149.00210310.1146/annurev.mi.03.100149.002103 Search in Google Scholar

[17] Silva C., et al. Developing a kinetic model to describe wastewater treatment by microalgae based on simultaneous carbon, nitrogen and phosphorous removal. Journal of Environmental Chemical Engineering 2020:8(3):103792. https://doi.org/10.1016/j.jece.2020.10379210.1016/j.jece.2020.103792 Search in Google Scholar

[18] Lee E., et al. Kinetic parameter estimation model for anaerobic co-digestion of waste activated sludge and microalgae. Bioresour. Technol. 2017:228:9–17. https://doi.org/10.1016/j.biortech.2016.12.07210.1016/j.biortech.2016.12.072 Search in Google Scholar

[19] Darvehei P., Bahri P. A., Moheimani N. R. Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews 2018:97(C):233–258. https://doi.org/10.1016/j.rser.2018.08.02710.1016/j.rser.2018.08.027 Search in Google Scholar

[20] Yun Y. D., Park M. Kinetic modeling of the light-dependent photosynthetic activity of the green microalga Chlorella vulgaris. Biotechnology and Bioengineering 2003:83(3):303–311. https://doi.org/10.1002/bit.1066910.1002/bit.10669 Search in Google Scholar

[21] Steele J. Environmental control of photosynthesis in the sea. Limnol. Oceanogr. 1962:7(2):137–150. https://doi.org/10.4319/lo.1962.7.2.013710.4319/lo.1962.7.2.0137 Search in Google Scholar

[22] Huesemann M., et al. Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds. Biotechnology and Bioengineering 2013:110(6):1583–1594. https://doi.org/10.1002/bit.2481410.1002/bit.24814 Search in Google Scholar

[23] Swinehart D. F. The Beer-Lambert Law. Journal of Chemical Education 1962:39(7):333. https://doi.org/10.1021/ed039p33310.1021/ed039p333 Search in Google Scholar

[24] Goldman J. Outdoor algal mass cultures—II. Photosynthetic yield limitations. Water Research 1979:13(2):119–136. https://doi.org/10.1016/0043-1354(79)90083-610.1016/0043-1354(79)90083-6 Search in Google Scholar

[25] Blumberga A. System Dynamics for environmental engineering students. 1st Edition. Riga: Riga Technical University, 2011. Search in Google Scholar

[26] Park S., Kim B., Jung S. Simulation methods of a system dynamics model for efficient operations and planning of capacity expansion of activated-sludge wastewater treatment plants. Procedia Engineering 2014:70:1289–1295. https://doi.org/10.1016/j.proeng.2014.02.14210.1016/j.proeng.2014.02.142 Search in Google Scholar

[27] Gatamaneni B., Orsat V., Lefsrud M. Factors Affecting Growth of Various Microalgal Species. Environmental Engineering Science 2018:35(10):1037–1048. https://doi.org/10.1089/ees.2017.052110.1089/ees.2017.0521 Search in Google Scholar

[28] Liang F., et al. Growth rate and biomass productivity of Chlorella as affected by culture depth and cell density in an open circular photobioreactor. Journal of Microbiology and Biotechnology 2013:23(4):539–544.10.4014/jmb.1209.0904723568209 Search in Google Scholar

[29] Amini H., et al. Numerical and experimental investigation of hydrodynamics and light transfer in open raceway ponds at various algal cell concentrations and medium depths. Chemical Engineering Science 2016:156:11–23. https://doi.org/10.1016/j.ces.2016.09.00310.1016/j.ces.2016.09.003 Search in Google Scholar

[30] Costa J., De Morais M. Biofuels from Algae. Pandey, Lee, Chisti, Soccol. 2013. Search in Google Scholar

[31] Thingstad T. A theoretical approach to structuring mechanisms in the pelagic food web. In Eutrophication in Planktonic Ecosystems: Food Web Dynamics and Elemental Cycling. Proceedings of the Fourth International PELAG Symposium 1996:127. Search in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other