Acceso abierto

Production of Biodiesel using Calcined Brine Sludge Waste from Chor-Alkali Industry as a Heterogeneous Catalyst


Cite

[1] O’Brien T., Bommaraju T. V., Hine F. History of the chlor-alkali industry. In Handbook of chlor-alkali technology. New York: Springer, 2005, pp. 17–36. https://doi.org/10.1007/0-306-48624-5_210.1007/0-306-48624-5_2 Search in Google Scholar

[2] Varjian R. D. Riegel’s Handbook of Industrial Chemistry. New York: Plenum, 2003. Search in Google Scholar

[3] Garg M., Pundir A. Utilization of Brine Sludge in Nonstructural buildings Components. A sustainable approach. Journal of Waste Management 2014:(1):1–7. https://doi.org/10.1155/2014/38931610.1155/2014/389316 Search in Google Scholar

[4] Leung D. Y. C., Wu X., Leung M. K. H. A review on biodiesel production using catalyzed transesterification. Applied Energy 2010:87(4):1083–1095. https://doi.org/10.1016/j.apenergy.2009.10.00610.1016/j.apenergy.2009.10.006 Search in Google Scholar

[5] Foroutan R., Mohammadi R., Ramavandi B. Waste glass catalyst for biodiesel production from waste chicken fat: Optimization by RSM and ANNs and toxicity assessment. Fuel 2021:291:120151. https://doi.org/10.1016/j.fuel.2021.12015110.1016/j.fuel.2021.120151 Search in Google Scholar

[6] Gulum M., Bilgin A. An experimental optimization research of methyl and ethyl esters production from safflower oil. Environmental and Climate Technologies 2018:(22):132–148. https://doi.org/10.2478/rtuect-2018-000910.2478/rtuect-2018-0009 Search in Google Scholar

[7] Gulum M., Onay F. K., Bilgin A. Evaluation of predictive capabilities of regression models and artificial neural networks for density and viscosity measurements of different biodiesel-diesel-vegetable oil ternary blends. Environmental and Climate Technologies 2018:(22):179–205. https://doi.org/10.2478/rtuect-2018-001210.2478/rtuect-2018-0012 Search in Google Scholar

[8] Marchetti J. M., Miguel V. U., Errazu A. F. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews 2007:11(6):1300–1311. https://doi.org/10.1016/j.rser.2005.08.00610.1016/j.rser.2005.08.006 Search in Google Scholar

[9] Veipa A., Kirsanovs V., Barisa, A. Techno-Economic Analysis of Biofuel Production Plants Producing Biofuels Using Fisher Tropsch Synthesis. Environmental and Climate Technologies 2020:24(2):373–387. https://doi.org/10.2478/rtuect-2020-008010.2478/rtuect-2020-0080 Search in Google Scholar

[10] Gulum M., Bilgin, A. Measurement and Prediction of Density and Viscosity of Different Diesel-Vegetable Oil Binary Blends. Environmental and Climate Technologies 2019:23(2):214–228. https://doi.org/10.2478/rtuect-2019-001410.2478/rtuect-2019-0014 Search in Google Scholar

[11] Elegbede I., Guerrero, C. Algae Biofuel in the Nigerian Energy Context. Environmental and Climate Technologies 2016:17:44–60. https://doi.org/10.1515/rtuect-2016-000510.1515/rtuect-2016-0005 Search in Google Scholar

[12] Leviņa B., Romagnoli, F. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review. Environmental and Climate Technologies 2020:24(2):203–220. https://doi.org/10.2478/rtuect-2020-006710.2478/rtuect-2020-0067 Search in Google Scholar

[13] Salamatinia B., Abdullah A. Z., Bhatia S. Quality evaluation of biodiesel produced through ultrasound-assisted Heterogeneous catalytic system. Fuel Processing Technologies 2012:97:1–8. https://doi.org/10.1016/j.fuproc.2012.01.00310.1016/j.fuproc.2012.01.003 Search in Google Scholar

[14] Viriya-Empikul N., et al. Waste shells of mollusk and egg as biodiesel production catalysts. Bio54resource Technology 2010:101(10):1765–1767. https://doi.org/10.1016/j.biortech.2009.12.07910.1016/j.biortech.2009.12.07920079632 Search in Google Scholar

[15] Granados M. L., et al. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental 2007:73(3–4):317–326. https://doi.org/10.1016/j.apcatb.2006.12.01710.1016/j.apcatb.2006.12.017 Search in Google Scholar

[16] Modiba E., Osifo P., Rutto H. The use of impregnated perlite as a heterogeneous catalyst for biodiesel production from marula oil. Chemical Papers 2014:68:1341–1349. https://doi.org/10.2478/s11696-014-0583-110.2478/s11696-014-0583-1 Search in Google Scholar

[17] Modiba E., Enweremadu C., Rutto H. Production of biodiesel from waste vegetable oil using impregnated diatomite as heterogeneous catalyst. Chinese Journal of Chemical Engineering 2015:23(1):281–289. https://doi.org/10.1016/j.cjche.2014.10.01710.1016/j.cjche.2014.10.017 Search in Google Scholar

[18] Borah M. J., et al. Transesterification of waste cooking oil for biodiesel production catalyzed by Zn substituted waste egg shell derived CaO nanocatalyst. Fuel 2019:242:345–354. https://doi.org/10.1016/j.fuel.2019.01.06010.1016/j.fuel.2019.01.060 Search in Google Scholar

[19] Etim A. O., Musonge, P., Eloka-Eboka, A. C. Effectiveness of biogenic waste-derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels, Bioproducts and Biorefining 2020:14(3):620–649. https://doi.org/10.1002/bbb.209410.1002/bbb.2094 Search in Google Scholar

[20] Sharma A., Kodgire P., Kachhwaha S. S. Investigation of ultrasound-assisted KOH and CaO catalyzed transesterification for biodiesel production from waste cotton-seed cooking oil: Process optimization and conversion rate evaluation. Journal of Cleaner Production 2020:259:120982. https://doi.org/10.1016/j.jclepro.2020.12098210.1016/j.jclepro.2020.120982 Search in Google Scholar

[21] Singh V., et al. Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM). Energy Conversion and Management 2018:174:198–207. https://doi.org/10.1016/j.enconman.2018.08.02910.1016/j.enconman.2018.08.029 Search in Google Scholar

[22] Al-zuhair S., Wei F., Song L. Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Biochemistry 2007:42(6):951–960. https://doi.org/10.1016/j.procbio.2007.03.00210.1016/j.procbio.2007.03.002 Search in Google Scholar

[23] Kouzu M., et al. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 2008:87(12):2798–2806. https://doi.org/10.1016/j.fuel.2007.10.01910.1016/j.fuel.2007.10.019 Search in Google Scholar

[24] Meher L. C., Vidya-Sagar D., Naik S. N. Technical aspects of biodiesel production by transesterification - A review. Renewable and Sustainable Energy 2006:10(3):248–268. https://doi.org/10.1016/j.rser.2004.09.00210.1016/j.rser.2004.09.002 Search in Google Scholar

[25] Patil P. D., Deng S. Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel 2009:88(7):1302–1306. https://doi.org/10.1016/j.fuel.2009.01.01610.1016/j.fuel.2009.01.016 Search in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other