Acceso abierto

Energy and Thermal Conductivity Assessment of Dimethyl-Ether and its Azeotropic Mixtures as Alternative Low Global Warming Potential Refrigerants in a Refrigeration System


Cite

[1] Memet F. A performance analysis on a vapour compression refrigeration system generated by the replacement of R134a. Journal of Maritime Research 2014:11:83–87. Search in Google Scholar

[2] Bolaji B. O. Experimental study of R152a to Replace R12 and R134a in a domestic refrigerator. Energy 2010:35(9):3793–3798. https://doi.org/10.1016/j.energy.2010.05.03110.1016/j.energy.2010.05.031 Search in Google Scholar

[3] Borokinni F. O., Bolaji B. O., Ismail A. A. Experimental analysis of the performance of the eco-friendly R510A and R600a refrigerants in a retrofitted vapour compression refrigerating system. International Journal of Maritime Science and Technology 2018:65:11–17. https://doi.org/10.17818/NM/2018/1.210.17818/NM/2018/1.2 Search in Google Scholar

[4] Venkatarathnam G., Srinivasa M. S. Refrigerants for vapour compression refrigeration systems. Reson 2012:17:139–162. https://doi.org/10.1007/s12045-012-0015-x10.1007/s12045-012-0015-x Search in Google Scholar

[5] Bhatkar V. W., Kriplani V. M., Awari G. K. Alternative refrigerants in vapour compression refrigeration cycle for sustainable environment: a review of recent research. International Journal of Environmental Science and Technology 2013:10:871–880. https://doi.org/10.1007/s13762-013-0202-710.1007/s13762-013-0202-7 Search in Google Scholar

[6] Bolaji B. O., Komolafe O. D., Ajayi F. O., Akinnibosun E. Performance assessment of three eco-friendly hydro-fluorocarbon and hydrocarbon refrigerant mixtures as R22 alternatives in refrigeration system. Journal of Scientific Research 2015:23:1677–1684. Search in Google Scholar

[7] Bolaji B. O., Huan Z. Ozone depletion and global warming: case for the use of natural refrigerant – a review. Renewable and Sustainable Energy Reviews 2013:18:49–54. https://doi.org/10.1016/j.rser.2012.10.00810.1016/j.rser.2012.10.008 Search in Google Scholar

[8] Daviran S., Kasaeian A., Golzari S., Mahian O., Nasirivatan S., Wongwises S. A comparative study on the performance of R1234yf and R134a as an alternative in automotive air conditioning systems. Applied Thermal Engineering 2017:110:1091–1100. https://doi.org/10.1016/j.applthermaleng.2016.09.03410.1016/j.applthermaleng.2016.09.034 Search in Google Scholar

[9] Bolaji B. O., Oyelaran O. A., Okoye O. C. Thermodynamic study of environment-friendly R429A, R435A and R457A refrigerants as substitutes for ozone depleting R22 in refrigeration and air-conditioning systems. Scientific Journal of Maritime Research 2017:31:45–52. Search in Google Scholar

[10] Rhodes W. J. Stratospheric ozone protection: an EPA engineering perspective. Journal of the Air & Waste Management Association 1991:41(12):1579–1584. https://doi.org/10.1080/10473289.1991.1046695310.1080/10473289.1991.10466953 Search in Google Scholar

[11] Bolaji B. O. Performance of a R22 split-air-conditioner when retrofitted with ozone friendly refrigerants (R410A and R417A). Journal of Energy in Southern African 2012:23(3):16–22. https://doi.org/10.17159/2413-3051/2012/v23i3a316810.17159/2413-3051/2012/v23i3a3168 Search in Google Scholar

[12] Fahey D. W. The Montreal Protocol protection of ozone and climate. Theoretical Inquiries in Law 2013:14:21–42. https://doi.org/10.1515/til-2013-00410.1515/til-2013-004 Search in Google Scholar

[13] Banjo S. O., Bolaji B. O., Ajayi O. O., Olufemi B. P., Osagie I., Onokwai A. O. Performance enhancement using appropriate mass charge of R600a in a developed domestic refrigerator. International Conference on Energy and Sustainable Environment, IOP Conference Series: Earth and Environmental Science 2019:331:012025. https://doi.org/10.1088/1755-1315/331/1/01202510.1088/1755-1315/331/1/012025 Search in Google Scholar

[14] Cleland D. J., Love R. J. Refrigerants – back to the future? Ecolibrium: Journal of the Australian Institute of Refrigeration. Air Conditioning and Heating 2012:32–39. Search in Google Scholar

[15] Andersen S. O, Halberstadt M. L., Borgford-Parnell N. Stratospheric ozone, global warming, and the principle of unintended consequences – An ongoing science and policy success story. Journal of the Air & Waste Management Association 2013:63(6):607–647. https://doi.org/10.1080/10962247.2013.79134910.1080/10962247.2013.79134923858990 Search in Google Scholar

[16] Hurwitz M. M., Fleming E. L., Newman P. A., Li F., Mlawer E., Cady-Pereira K., Bailey R. Ozone depletion by hydrofluorocarbons. Geophysical Research Letters 2015:42:8686–8692. https://doi.org/10.1002/2015GL06585610.1002/2015GL065856 Search in Google Scholar

[17] Fang X., Velders G. J., Ravishankara A. R., Molina M. J., Hu J., Prinn R. G. Hydrofluorocarbon (HFC) emissions in China: an inventory for 2005–2013 and projections to 2050. Environmental Science & Technology 2016:50(4):2027–2034. https://doi.org/10.1021/acs.est.5b0437610.1021/acs.est.5b0437626731627 Search in Google Scholar

[18] Calm J. M., Hourahan G. C. Physical, safety, and environmental data summary for current and alternative refrigerants. Proceedings for the 23rd International Congress of Refrigeration. Prague, Czech Republic, August 21–26, 2011. Search in Google Scholar

[19] Bolaji B. O. Performance investigation of ozone-friendly R404A and R507 refrigerants as alternatives to R22 in a window air-conditioner. Energy and Buildings 2011:43(11):3139–3143. https://doi.org/10.1016/j.enbuild.2011.08.01110.1016/j.enbuild.2011.08.011 Search in Google Scholar

[20] Longo G. A., Righetti G., Zilio C. Heat-transfer assessment of the low GWP substitutes for traditional HFC refrigerants. International Journal of Heat and Mass Transfer 2019:139:31–38. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.14410.1016/j.ijheatmasstransfer.2019.04.144 Search in Google Scholar

[21] Aprea C., Greco A., Maiorino A. An experimental investigation on the substitution of R134a with R1234yf in a domestic refrigerator. Applied Thermal Engineering 2016:106:959–967. https://doi.org/10.1016/j.applthermaleng.2016.06.09810.1016/j.applthermaleng.2016.06.098 Search in Google Scholar

[22] UNEP. Report of the Refrigeration, Air-conditioning and Heat pumps Technical Options Committee, 2014 Assessment. United National Environment Programme, Nairobi, 2014. Search in Google Scholar

[23] IPCC. Climate change: the scientific basis, in contribution of working group I to the IPCC fourth assessment report of the international panel on climate change. Cambridge University Press: Cambridge, 2007. Search in Google Scholar

[24] Navarro-Esbri J., Mendoza-Miranda J. M., Mota-Babiloni A., Barraga-Cervera A., Barragan-Cervera A., Belman-Flores J. M. Experimental analysis of R1234yf as a drop-in replacement for R134a in a vapour compression system. International Journal of Refrigeration 2013:36(3):870–880. https://doi.org/10.1016/j.ijrefrig.2012.12.01410.1016/j.ijrefrig.2012.12.014 Search in Google Scholar

[25] Bolaji B. O. Influence of sub-cooling on the energy performance of two eco-friendly R22 alternative refrigerants. Journal of Science and Technology 2014:34(2):73–83. https://doi.org/10.4314/just.v34i2.910.4314/just.v34i2.9 Search in Google Scholar

[26] Zhang L., Zhao J. X., Yue L. F., Zhou H. X., Ren C. L. Cycle performance evaluation of various R134a/hydrocarbon blend refrigerants applied in vapour-compression heat pumps. Advances in Mechanical Engineering 2019:11:1–14. https://doi.org/10.1177/168781401881956110.1177/1687814018819561 Search in Google Scholar

[27] Banjo S. O., Bolaji B. O., Osagie I., Fayomi O. S. I., Fakehinde O. B., Olayiwola P. S., Oyedepo S. O., Udoye N. E. Experimental analysis of the performance characteristic of an eco-friendly HC600a as a retrofitting refrigerant in a thermal system. Journal of Physics: Conference Series 2019:1378:042033. https://doi.org/10.1088/1742-6596/1378/4/04203310.1088/1742-6596/1378/4/042033 Search in Google Scholar

[28] Abas N., Kalair A. R., Khan N., Haider A., Saleem Z. and Saleem M. B. Natural and synthetic refrigerants, global warming: A review. Renewable and Sustainable Energy Reviews 2018:90:557–569. https://doi.org/10.1016/j.rser.2018.03.09910.1016/j.rser.2018.03.099 Search in Google Scholar

[29] Opeyemi L., Borokinni F., Adelani I., Olatunbosun B., Abdulkadir B. Effect of sub-cooling on the performance of a retrofitted domestic refrigerator using eco-friendly refrigerants. International Journal of Engineering Research and Technology 2017:6(4):670–679. Search in Google Scholar

[30] Bolaji B. O., Abiala I. O., Ismaila S. O., Borokinni F. O. Theoretical comparison of two of eco-friendly refrigerants as alternative to R22 in using a simple vapour compression refrigeration system. Transactions of Famena 2014:38:59–70. Search in Google Scholar

[31] Ohno Y., Yoshida M., Shikada T., Inokoshi O., Ogawa T., Inoue N. New direct synthesis technology for DME (dimethyl-ether) and its application technology. JFE Technical Report 2006:8:34–40. Search in Google Scholar

[32] Afroz H. M. M., Miyara A. Binary mixtures of carbon dioxide and dimethyl-ether as alternative refrigerants and their vapour-liquid equilibrium data prediction. International Journal of Engineering, Science and Technology 2011:3:10–21. https://doi.org/10.4314/ijest.v3i1.6763510.4314/ijest.v3i1.67635 Search in Google Scholar

[33] Sethi A., Becerra E. V., Motta S. Y. Low GWP R134a replacements for small refrigeration (plug-in) applications. International Journal of Refrigeration 2016:66:64–72. https://doi.org/10.1016/j.ijrefrig.2016.02.00510.1016/j.ijrefrig.2016.02.005 Search in Google Scholar

[34] Bolaji B. O., Adeleke A. E., Adu M. R., Olanipekun M. U., Akinnibosun E. Theoretical investigation of energy-saving potential of eco-friendly R430A, R440A and R450A refrigerants in a domestic refrigerator. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 2019:43:103–112. https://doi.org/10.1007/s40997-017-0110-410.1007/s40997-017-0110-4 Search in Google Scholar

[35] He M-G., Song X-Z., Liu H., Zhang Y. Application of natural refrigerant propane and propane/isobutene in large capacity chest freezer. Applied Thermal Engineering 2014:70:732–736. https://doi.org/10.1016/j.applthermaleng.2014.05.09710.1016/j.applthermaleng.2014.05.097 Search in Google Scholar

[36] Yu C. C., Teng T-P. Retrofit assessment of refrigerator using hydrocarbon refrigerants. Applied Thermal Engineering 2014:66(1–2):507–518. https://doi.org/10.1016/j.applthermaleng.2014.02.05010.1016/j.applthermaleng.2014.02.050 Search in Google Scholar

[37] Sahoo K. C., Das S. N. Theoretical Design of adiabatic capillary tube of a domestic refrigerator using refrigerant R600a. American Journal of Engineering Research 2014:3:306–314. Search in Google Scholar

[38] Dhananjeyan R., Senthil kumar S., Thilak M., Ganeshkarthikeyan M. Performance analysis of VCR system by using hydrocarbon refrigerants. International Journal of Innovative Research in Technology 2017:4:127–132. Search in Google Scholar

[39] AIRAH. Flammable refrigerants – Safety guide. The Australian Institute of Refrigeration, Air Conditioning and Heating (AIRAH) 2013. [Online]. [Accessed: 18.03.2019]. Available: www.airah.org.au Search in Google Scholar

[40] Choudhari C. S., Sapali S. N. Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems. Energy Procedia 2017:109:346–352.10.1016/j.egypro.2017.03.084 Search in Google Scholar

[41] Shaik S. V., Ashok-Babu T. P. S. Thermodynamic analysis of window air conditioner using sustainable refrigerant R290/RE170 and R1270/RE170 blends as substitutes to refrigerant R22. International Journal of Heat and Technology 2019:37:80–94.10.18280/ijht.370110 Search in Google Scholar

[42] Bolaji B. O. Investigating the performance of some environment-friendly refrigerants as alternative to R12 in vapour compression refrigeration system. Ph.D. Thesis, Department of Mechanical Engineering, Federal University of Technology, Akure, Nigeria, 2008. Search in Google Scholar

[43] Lemmon E. W., Huber M. L., McLinden M. O. Reference fluids thermodynamic and transport properties - REFPROP 9.1. National Institute of Standards and Technology (NIST), Gaithersburg (MD), Boulder, USA, 2013. Search in Google Scholar

[44] Latini G., Sotte M. Thermal conductivity of refrigerants in the liquid state: A comparison of estimation methods. International Journal of Refrigeration 2012:35(5):1377–1383. https://doi.org/10.1016/j.ijrefrig.2012.04.00910.1016/j.ijrefrig.2012.04.009 Search in Google Scholar

[45] Di Nicola G., Pierantozzi M., Petrucci G., Stryjek R. Equation for the thermal conductivity of liquids and an artificial neural network. Journal of Thermophysics and Heat Transfer 2016:30(3):651-660. https://doi.org/10.2514/1.T486310.2514/1.T4863 Search in Google Scholar

[46] Padilla M., Revellin R., Bonjour J. Exergy analysis of R413A as replacement of R12 in a domestic refrigeration system. Energy Conversion and Management 2010:51(11):2195–2201. https://doi.org/10.1016/j.enconman.2010.03.01310.1016/j.enconman.2010.03.013 Search in Google Scholar

[47] Bolaji B. O., Adu M. R., Olanipekun M. U., Akinnibosun E. Energy Performance of Environmental-friendly R435A and R161 Refrigerants in Sub-cooling Refrigeration Systems. The Holistic Approach to Environment 2017:7(3):125–137. Search in Google Scholar

[48] Gil B., Fijałkowska B. Experimental Study of Nucleate Boiling of Flammable, Environmentally Friendly Refrigerants. Energies 2020:13(1):160. https://doi.org/10.3390/en1301016010.3390/en13010160 Search in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other