Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] European Commission. The revised energy efficiency directive. [Online]. Available at: https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficiency-directiveSearch in Google Scholar

[2] Buffa S., Cozzini M., D’Antoni M., Baratieri M., Fedrizzi R. 5th generation district heating and cooling systems: a review of existing cases in Europe. Renewable and Sustainable Energy Reviews 2009:104:504–522. doi:10.1016/j.rser.2018.12.05910.1016/j.rser.2018.12.059Open DOISearch in Google Scholar

[3] Schmidt D. Low Temperature District Heating for Future Energy Systems. Energy Procedia 2018:149:595–604. doi:10.1016/j.egypro.2018.08.22410.1016/j.egypro.2018.08.224Open DOISearch in Google Scholar

[4] Chicherin S. Low-temperature district heating distributed from transmission-distribution junctions to users: energy and environmental modelling. Energy Procedia 2018:147:382–389. doi:10.1016/j.egypro.2018.07.10710.1016/j.egypro.2018.07.107Open DOISearch in Google Scholar

[5] Li Y., Xia J., Su Y., Jiang Y. Systematic optimization for the utilization of low-temperature industrial excess heat for district heating. Energy 2018:144:984–991. doi:10.1016/j.energy.2017.12.04810.1016/j.energy.2017.12.048Open DOISearch in Google Scholar

[6] Arat H., Arslan O. Exergoeconomic analysis of district heating system boosted by the geothermal heat pump. Energy 2017:119:1159–1170. doi:10.1016/j.energy.2016.11.07310.1016/j.energy.2016.11.073Open DOISearch in Google Scholar

[7] Olsen P. K., Christiansen C. H., Hofmeister M., Svendsen S., Thorsen J. E. Guidelines for low-temperature district heating. EUDP 2010-II project Journal No. 64010-0479, 2014.Search in Google Scholar

[8] Nord N., Nielsen E. K. L., Kauko H., Tereshchenko T. Challenges and potentials for low-temperature district heating implementation in Norway. Energy 2018:151:889–902. doi:10.1016/j.energy.2018.03.09410.1016/j.energy.2018.03.094Search in Google Scholar

[9] Cai H., You S., Wang J., Bindner H. W., Klyapovskiy S. Technical assessment of electric heat boosters in low-temperature district heating based on combined heat and power analysis. Energy 2018:150:938–949. doi:10.1016/j.energy.2018.02.08410.1016/j.energy.2018.02.084Open DOISearch in Google Scholar

[10] Park B. S., Imran M., Hoon I. Y., Usman M. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea. Applied Thermal Engineering 2017:126:117–133. doi:10.1016/j.applthermaleng.2017.07.08010.1016/j.applthermaleng.2017.07.080Search in Google Scholar

[11] Li H., Wang S. J. Challenges in Smart Low-Temperature District Heating Development. Energy Procedia 2014:61:1472–1475. doi:10.1016/j.egypro.2014.12.15010.1016/j.egypro.2014.12.150Open DOISearch in Google Scholar

[12] Yang X., Svendsen S. Achieving low return temperature for domestic hot water preparation by ultra-low-temperature district heating. Energy Procedia 2017:116:426–437. doi:10.1016/j.egypro.2017.05.09010.1016/j.egypro.2017.05.090Open DOISearch in Google Scholar

[13] Østergaard D., Svendsen S. Space heating with ultra-low-temperature district heating – a case study of four single-family houses from the 1980s. Energy Procedia 2017:116:226–235. doi:10.1016/j.egypro.2017.05.07010.1016/j.egypro.2017.05.070Open DOISearch in Google Scholar

[14] Latosov E., Volkova A., Siirde A., Kurnitski J., Thalfeldt M. Methodological Approach to Determining the Effect of Parallel Energy Consumption on District Heating System. Environmental and Climate Technologies 2017:19(1):5–14. doi:10.1515/rtuect-2017-000110.1515/rtuect-2017-0001Open DOISearch in Google Scholar

[15] Mediastika C. E., Hariyono J. Wall Cladding Effects and Occupants’ Perception of Indoor Temperature of Typical Student Apartments in Surabaya, Indonesia. Environmental and Climate Technologies 2017:20(1):51–66. doi:10.1515/rtuect-2017-001010.1515/rtuect-2017-0010Open DOISearch in Google Scholar

[16] Albatayneh A., Alterman D., Page A., Moghtaderi B. The Significance of Building Design for the climate. Environmental and Climate Technologies 2018:22(1):165–178. doi:10.2478/rtuect-2018-001110.2478/rtuect-2018-0011Open DOISearch in Google Scholar

[17] Lund H., et al. The status of 4th generation district heating: Research and results. Energy 2018:164:147–159. doi:10.1016/j.energy.2018.08.20610.1016/j.energy.2018.08.206Open DOISearch in Google Scholar

[18] Im Y-H., Liu J. Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model. Energy 2018:153:988–999. doi:10.1016/j.energy.2018.04.09410.1016/j.energy.2018.04.094Open DOISearch in Google Scholar

[19] Sameti M., Haghighat F. Optimization of 4th generation distributed district heating system: Design and planning of combined heat and power. Renewable Energy 2019:130:371–387. doi:10.1016/j.renene.2018.06.06810.1016/j.renene.2018.06.068Open DOISearch in Google Scholar

[20] Tunzi M., Østergaard D. S., Svendsen S., Boukhanouf R., Cooper E. Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings. Energy 2016:113:413–421. doi:10.1016/j.energy.2016.07.03310.1016/j.energy.2016.07.033Open DOISearch in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other