Acceso abierto

CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
“Special Issue of Environmental and Climate Technologies Part II: Energy, bioeconomy, climate changes and environment nexus”

Cite

[1] Lebranchu A., et al. Impact of shear stress and impeller design on the production of biogas in anaerobic digesters. Bioresource Technology 2017:245(A):1139–1147. doi:10.1016/j.biortech.2017.07.11310.1016/j.biortech.2017.07.11328863993Open DOISearch in Google Scholar

[2] Naegele H. J., et al. Electric energy consumption of the full scale research biogas plant ‘unterer lindenhof’: results of longterm and full detail measurements. Energies 2012:5(12):5198–5214. doi:10.3390/en512519810.3390/en5125198Open DOISearch in Google Scholar

[3] Sonnleitner M. Ecological and economic optimization of biogas plants. MPhil Thesis. Leicester: De Montfort University, 2012.Search in Google Scholar

[4] Singh B., Szamosi Z., Simenfalvi Z. State of the art on mixing in an anaerobic digester: a review. Renewable Energy 2019:141:922–936. doi:10.1016/j.renene.2019.04.07210.1016/j.renene.2019.04.072Open DOISearch in Google Scholar

[5] Kowalczyk A., et al. Different mixing modes for biogas plants using energy crops. Applied Energy 2013:112:465–472. doi:10.1016/j.apenergy.2013.03.06510.1016/j.apenergy.2013.03.065Open DOISearch in Google Scholar

[6] Wiedemann L., et al. Mixing in Biogas Digesters and Development of an Artificial Substrate for Laboratory-Scale Mixing Optimization. Chemical Engineering & Technology 2017:40:238–247. doi:10.1002/ceat.20160019410.1002/ceat.201600194Open DOISearch in Google Scholar

[7] Conti F., et al. Mixing of a Model Substrate in a Scale-down Laboratory Digester and Processing with a Computational Fluid Dynamics Model. Proc. of 26th EUBCE-European Biomass Conference and Exhibition, Copenhagen 2018:811–815. doi:10.5071/26thEUBCE2018-2CV.5.3410.5071/26thEUBCE2018-2CV.5.34Open DOISearch in Google Scholar

[8] Leonzio G. Study of mixing systems and geometric configurations for anaerobic digesters using CFD analysis. Renewable Energy 2018:123:578–589. doi:10.1016/j.renene.2018.02.07110.1016/j.renene.2018.02.071Search in Google Scholar

[9] Bridgeman J. Computational fluid dynamics modeling of sewage sludge moxing in an anaerobic digester. Advances in Engineering Software 2012:44(1):54–62. doi:10.1016/j.advengsoft.2011.05.03710.1016/j.advengsoft.2011.05.037Open DOISearch in Google Scholar

[10] Dapelo D., Alberini F., Bridgeman J. Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestion. Water Res. 2015:85:497–511. doi:10.1016/j.watres.2015.08.04210.1016/j.watres.2015.08.04226379205Search in Google Scholar

[11] Ding J., et al. CFD optimization of continuous stirred-tank (CSTR) reactor for biohydrogen production. Bioresource Technology 2010:101:7005–7013. doi:10.1016/j.biortech.2010.03.14610.1016/j.biortech.2010.03.14620427177Open DOISearch in Google Scholar

[12] Keshtkar A., et al. Mathematical modeling of nonideal mixing continuous flow reactors for anaerobic digestion of cattle manure. Bioresource Technology 2003:87(1):113–124. doi:10.1016/S0960-8524(02)00104-910.1016/S0960-8524(02)00104-9Open DOISearch in Google Scholar

[13] Vesvikar M. S., Al-Dahhan M. Flow pattern visualization in a mimic anaerobic digester using CFD. Biotechnology in Bioengineering 2005:89(6):719–732. doi:10.1002/bit.2038810.1002/bit.2038815685599Open DOISearch in Google Scholar

[14] Lopez-Jimenez P. A., et al. Application of CFD methods to an anaerobic digester: the case of Ontinyent WWPT, Valencia, Spain. Journal of Water Process Engineering 2015:7:131–140. doi:10.1016/j.jwpe.2015.05.00610.1016/j.jwpe.2015.05.006Open DOISearch in Google Scholar

[15] Wiedemann L., et al. Modeling Mixing in Anaerobic Digesters with Computational Fluid Dynamics Validated by Experiments. Chemical Engineering & Technology 2018:41:2101–2110. doi:10.1002/ceat.20180008310.1002/ceat.201800083Open DOISearch in Google Scholar

[16] Conti F., et al. Thermal behaviour of viscosity of aqueous cellulose solutions to emulate biomass in anaerobic digesters. New Journal of Chemistry 2018:42:1099–1104. doi:10.1039/c7nj03199h10.1039/C7NJ03199HSearch in Google Scholar

[17] Wiedemann L., et al. Investigation and optimization of the mixing in a biogas digester with a laboratory experiment and an artificial model substrate. Proceeding of 25th EUBCE-European Biomass Conference and Exibition, Stockholm 2017:889–892. doi:10.5071/25thEUBCE2017-2CV.4.1410.5071/25thEUBCE2017-2CV.4.14Open DOISearch in Google Scholar

[18] Sindall R. C., Bridgeman J., Carliell-marquet C. Velocity gradient as a tool to characterrize the link between mixing and biogas production in anaerobic waste digesters. Water Sci. Technol. 2013:67:2800–2806.10.2166/wst.2013.20623787320Search in Google Scholar

[19] Conti F., et al. Monitoring the mixing of an artificial model substrate in a scale-down laboratory digester. Renewable Energy 2019:132:351–362. doi:10.1016/j.renene.2018.08.01310.1016/j.renene.2018.08.013Open DOISearch in Google Scholar

[20] Shen F., et al. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation. Applied Biochem. Biotechnol. 2013:171626–642.10.1007/s12010-013-0375-z23873639Search in Google Scholar

[21] Gerogiorgis D. I., Ydstie B. E. Multiphysics CFD modeling for design and simulation of a multiphase chemical reactor. Chemical Engineering Research and Design 2005:83(6):603–610. doi:10.1205/cherd.0436410.1205/cherd.04364Open DOISearch in Google Scholar

[22] Atta A., Roy S., Nigam K. D. P. A two-phase Eulerian approach using relative permeability concept for modeling of hydrodynamics in trickle-bed reactors at elevated pressure. Chemical Engineering Research and Design 2010:88(3):369–378. doi:10.1016/j.cherd.2009.06.01110.1016/j.cherd.2009.06.011Open DOISearch in Google Scholar

[23] Celik I. B., et al. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluid Engineering 2008:130(7):0780011–0780014. doi:10.1115/1.296095310.1115/1.2960953Open DOISearch in Google Scholar

[24] Conti F., et al. Effect of mixing of waste biomass in anaerobic digesters for production of biogas. IOP Conf. Series: Materials Sci. Eng. 2018:446:012011. doi:10.1088/1757-899X/446/1/01201110.1088/1757-899X/446/1/012011Open DOISearch in Google Scholar

[25] Wu B. CFD investigation of turbulence models for mechanical agitation of non-Newtonian fluids in anaerobic digesters. Water Research 2011:45(5):2082–2094. doi:10.1016/j.watres.2010.12.02010.1016/j.watres.2010.12.020Open DOISearch in Google Scholar

[26] Alexopoulos A. H., Maggioris D., Kiparissides C. CFD analysis of turbulence non-homogeneity in mixing vessels: a two compartment model. Chemical Engineering Science 2002:57(10):1735–1752. doi:10.1016/S0009-2509(02)00053-210.1016/S0009-2509(02)00053-2Search in Google Scholar

[27] Trentini M., Lorenzon M., Conti F. Biotechnology to investigate the microbial community responsible of biogas production from biomass. Proceeding of 26th EUBCE-European Biomass Conference and Exhibition, Copenhagen, 2018:816–820. doi:10.5071/26thEUBCE2018-2CV.5.3510.5071/26thEUBCE2018-2CV.5.35Open DOISearch in Google Scholar

[28] Castellan N., Conti F. Molecular biotechnology to improve biofuel production from biomass. Proceeding of 27th EUBCE-European Biomass Conf. and Exhibition, Lisbon, 2019:951–957. doi:10.5071/27thEUBCE2019-2CV.6.2410.5071/27thEUBCE2019-2CV.6.24Open DOISearch in Google Scholar

[29] Djossou A., Conti F. Mesophilic and thermophilic bacteria in anaerobic digestion process. Proceeding of 27th EUBCE-European Biomass Conf. and Exhibition, Lisbon, 2019:942–945. doi:10.5071/27thEUBCE2019-2CV.6.910.5071/27thEUBCE2019-2CV.6.9Open DOISearch in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other