Acceso abierto

Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
Special Issue of Environmental and Climate Technologies Part I: Energy, bioeconomy, climate changes and environment nexus

Cite

[1] Mazhar A. R., Liu S., Shukla A. A state of art review on the district heating systems. Renewable and Sustainable Energy Reviews 2018:96:420–439. doi:10.1016/j.rser.2018.08.00510.1016/j.rser.2018.08.005Open DOISearch in Google Scholar

[2] Thellufsen J. Z., Nielsen S., Lund H. Implementing cleaner heating solutions towards a future low-carbon scenario in Ireland. Journal of Cleaner Production 2019:214:377–388. doi:10.1016/j.jclepro.2018.12.30310.1016/j.jclepro.2018.12.303Open DOISearch in Google Scholar

[3] Nord N., Kristine E., Nielsen L., Kauko H. Challenges and potentials for low-temperature district heating implementation in Norway. Energy 2018:151:889–902. doi:10.1016/j.energy.2018.03.09410.1016/j.energy.2018.03.094Open DOISearch in Google Scholar

[4] Schmidt D. Low Temperature District Heating for Future Energy Systems. Energy Procedia 2018:149:595–604. doi:10.1016/j.egypro.2018.08.22410.1016/j.egypro.2018.08.224Open DOISearch in Google Scholar

[5] Winterscheid C. Integration of solar thermal systems in existing district heating systems. Energy 2017:137:579–585 doi:10.1016/j.energy.2017.04.15910.1016/j.energy.2017.04.159Open DOISearch in Google Scholar

[6] Connolly D., et al. Heat roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system. Energy Policy 2014:65:475–489. doi:10.1016/j.enpol.2013.10.03510.1016/j.enpol.2013.10.035Open DOISearch in Google Scholar

[7] Rämä M., Sipilä K. Transition to low temperature distribution in existing systems. Energy Procedia 2017:116:58–68. doi:10.1016/j.egypro.2017.05.05510.1016/j.egypro.2017.05.055Open DOISearch in Google Scholar

[8] Li H., Wang S. J. Challenges in smart Low-temperature district heating development. Energy Procedia 2014:61:1472–1475. doi:10.1016/j.egypro.2014.12.15010.1016/j.egypro.2014.12.150Search in Google Scholar

[9] Imran M., Usman M., Im Y. H., Park B. S. The feasibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks. Energy Procedia 2017:116:4–12. doi:10.1016/j.egypro.2017.05.05010.1016/j.egypro.2017.05.050Open DOISearch in Google Scholar

[10] Schuchardt K. Integration of decentralized thermal storages within district heating networks. Environmental and Climate Technologies 2016:18:5–16. doi:10.1515/rtuect-2016-000910.1515/rtuect-2016-0009Search in Google Scholar

[11] Gadd H., Werner S. Achieving low return temperatures from district heating substations. Applied Energy 2014:136:59–67. doi:10.1016/j.apenergy.2014.09.02210.1016/j.apenergy.2014.09.022Open DOISearch in Google Scholar

[12] Dorotić H., Pukšec T., Duić N. Multi-objective optimization of district heating and cooling systems for a one-year time horizon. Energy 2019:169:319–328. doi:10.1016/j.energy.2018.11.14910.1016/j.energy.2018.11.149Open DOISearch in Google Scholar

[13] Volkova A., et al. Small low-temperature district heating network development prospects. Energy 2019:178:714–722. doi:10.1016/j.energy.2019.04.08310.1016/j.energy.2019.04.083Open DOISearch in Google Scholar

[14] Kouhia M., Laukkanen T., Holmberg H., Ahtila P. Evaluation of design objectives in district heating system design. Energy 2019:167:369–378. doi:10.1016/j.energy.2018.10.17010.1016/j.energy.2018.10.170Open DOISearch in Google Scholar

[15] Olsthoorn D., Haghighat F., Mirzaei P. A. Integration of storage and renewable energy into district heating systems: A review of modelling and optimization. Solar Energy 2016:136:49–64. doi:10.1016/j.solener.2016.06.05410.1016/j.solener.2016.06.054Open DOISearch in Google Scholar

[16] Fachinger F., Drewnick F., Gieré R., Borrmann S. Communal biofuel burning for district heating: Emissions and immissions from medium-sized (0.4 and 1.5 MW) facilities. Atmospheric Environment 2017:181:177–185. doi:10.1016/j.atmosenv.2018.03.01410.1016/j.atmosenv.2018.03.014Search in Google Scholar

[17] Caputo P., Ferla G., Ferrari S. Evaluation of environmental and energy effects of biomass district heating by a wide survey based on operational conditions in Italy. Energy 2019:174:1210–1218. doi:10.1016/j.energy.2019.03.07310.1016/j.energy.2019.03.073Open DOISearch in Google Scholar

[18] Morosuk T., Tsatsaronis G. Advanced exergy-based methods used to understand and improve energy-conversion systems. Energy 2019:169:238–246. doi:10.1016/j.energy.2018.11.12310.1016/j.energy.2018.11.123Open DOISearch in Google Scholar

[19] Gong M., Werner S. Exergy analysis of network temperature levels in Swedish and Danish district heating systems. Renewable Energy 2015:84:106–113. doi:10.1016/j.renene.2015.06.00110.1016/j.renene.2015.06.001Open DOISearch in Google Scholar

[20] Baldvinsson I., Nakata T. A feasibility and performance assessment of a low temperature district heating system – A North Japanese case study. Energy 2016:95:155–174. doi:10.1016/j.energy.2015.11.05710.1016/j.energy.2015.11.057Open DOISearch in Google Scholar

[21] Yazici H. Energy and exergy based evaluation of the renovated Afyon geothermal district heating system. Energy and Buildings 2016:127:794–804. doi:10.1016/j.enbuild.2016.06.03610.1016/j.enbuild.2016.06.036Open DOISearch in Google Scholar

[22] Laukkanen T. P., Kohl T., Järvinen M. P., Ahtila P. Primary exergy efficiency-effect of system efficiency environment to benefits of exergy savings. Energy and Buildings 2016:124:248–254. doi:10.1016/j.enbuild.2015.09.03510.1016/j.enbuild.2015.09.035Open DOISearch in Google Scholar

[23] Andrić I., et al. On the performance of district heating systems in urban environment: an emergy approach. Journal of Cleaner production 2017:142:109–120. doi:10.1016/j.jclepro.2016.05.12410.1016/j.jclepro.2016.05.124Open DOISearch in Google Scholar

[24] Raugei M., Rugani B., Benetto E., Ingwersen W. W. Integrating emergy into LCA: Potential added value and lingering obstacles. Ecological Modelling 214:271:4–9. doi:10.1016/j.ecolmodel.2012.11.02510.1016/j.ecolmodel.2012.11.025Open DOISearch in Google Scholar

[25] Coss S., Verda V., Le-Corre O. Multi-objective optimization of district heating network model and assessment of demand side measures using the load deviation index. Journal of Cleaner Production 2018:182:338–351. doi:10.1016/j.jclepro.2018.02.08310.1016/j.jclepro.2018.02.083Open DOISearch in Google Scholar

[26] Patterson M., McDonald G., Hardy D. Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting. Ecological Modelling 2017:362:19–36. doi:10.1016/j.ecolmodel.2017.07.02210.1016/j.ecolmodel.2017.07.022Open DOISearch in Google Scholar

[27] Oliver-Solà J., Gabarrell X., Rieradevall J. Environmental impacts of the infrastructure for district heating in urban neighbourhoods. Energy Policy 2009:37(11):4711–4719. doi:10.1016/j.enpol.2009.06.02510.1016/j.enpol.2009.06.025Open DOISearch in Google Scholar

[28] Nitkiewicz A., Sekret R. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler. Energy Conversion and Management 2014:87:647–652. doi:10.1016/j.enconman.2014.07.03210.1016/j.enconman.2014.07.032Open DOISearch in Google Scholar

[29] Parajuli R., et al. Life Cycle Assessment of district heat production in a straw fired CHP plant. Biomass and Bioenergy 2014:68:115–134. doi:10.1016/j.biombioe.2014.06.00510.1016/j.biombioe.2014.06.005Open DOISearch in Google Scholar

[30] Ivner J., Broberg Viklund S. Effect of the use of industrial excess heat in district heating on greenhouse gas emissions: A systems perspective. Resources Conservavtion and Recycing 2015:100:81–87. doi:10.1016/j.resconrec.2015.04.01010.1016/j.resconrec.2015.04.010Open DOISearch in Google Scholar

[31] Sandvall A. F., Ahlgren E. O., Ekvall T. Low-energy buildings heat supply–Modelling of energy systems and carbon emissions impacts. Energy Policy 2017:111:371–382. doi:10.1016/j.enpol.2017.09.00710.1016/j.enpol.2017.09.007Open DOISearch in Google Scholar

[32] Bartolozzi Irizzi., F., Frey M. Are district heating systems and renewable energy sources always an environmental win-win solution? A life cycle assessment case study in Tuscany, Italy. Renewable and Sustainable Energy Reviews 2017:80:408–420. doi:10.1016/j.rser.2017.05.23110.1016/j.rser.2017.05.231Open DOISearch in Google Scholar

[33] Havukainen J., Nguyen M. T., Väisänen S., Horttanainen M. Life cycle assessment of small-scale combined heat and power plant: Environmental impacts of different forest biofuels and replacing district heat produced from natural gas. Journal of Cleaner Production 2018:172:837–846. doi:10.1016/j.jclepro.2017.10.24110.1016/j.jclepro.2017.10.241Open DOISearch in Google Scholar

[34] Pericault Y., Kärrman E., Viklander M., Hedström A. Data supporting the life cycle impact assessment and cost evaluation of technical alternatives for providing water and heating services to a suburban development in Gällivare Sweden. Data in Brief 2018:21:1204–1208. doi:10.1016/j.dib.2018.10.05810.1016/j.dib.2018.10.058623128530456233Open DOISearch in Google Scholar

[35] Pakere I., Romagnoli F., Blumberga D. Introduction of small-scale 4th generation district heating system. Methodology approach. Energy Procedia 2018:149:549–554. doi:10.1016/j.egypro.2018.08.21910.1016/j.egypro.2018.08.219Open DOISearch in Google Scholar

[36] Møller Sneum D., Sandberg E., Koduvere H., Olsen O. J., Blumberga D. Policy incentives for flexible district heating in the Baltic countries. Utilities Policy 2018:51:61–72. doi:10.1016/j.jup.2018.02.00110.1016/j.jup.2018.02.001Open DOISearch in Google Scholar

[37] Park B. S., Imran M., Hoon I. Y., Usman M. Thermo-economic optimization of secondary distribution network of low temperature district heating network under local conditions of South Korea. Applied Thermal Engineering 2017:126:117–133. doi:10.1016/j.applthermaleng.2017.07.08010.1016/j.applthermaleng.2017.07.080Open DOISearch in Google Scholar

[38] Flores J. F. C., Lacarrière B., Chiu J. N. W., Martin V. Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks. Energy Procedia 2017:116:260–272. doi:10.1016/j.egypro.2017.05.07310.1016/j.egypro.2017.05.073Open DOISearch in Google Scholar

[39] Kauko H., Kvalsvik K. H., Rohde D., Hafner A., Nord N. Dynamic modelling of local low-temperature heating grids: A case study for Norway. Energy 2017:139:289–297. doi:10.1016/j.energy.2017.07.08610.1016/j.energy.2017.07.086Open DOISearch in Google Scholar

[40] Balić D., Maljković D., Lončar D. Multi-criteria analysis of district heating system operation strategy. Energy Conversion Management 2017:144:414–428. doi:10.1016/j.enconman.2017.04.07210.1016/j.enconman.2017.04.072Open DOISearch in Google Scholar

[41] Lauka D., Pakere I., Blumberga D. First solar power plant in Latvia. Analysis of operational data. Energy Procedia 2018:147:162–165. doi:10.1016/j.egypro.2018.07.04910.1016/j.egypro.2018.07.049Open DOISearch in Google Scholar

[42] Ziemele J., Pakere I., Blumberga D. Development of District Heating System in Case of Decreased Heating Loads. Presented at the 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2014), Turku, Finland, 2014:2044–2055.Search in Google Scholar

[43] Kittipongvises S. Assessment of environmental impacts of limestone quarrying operations in Thailand. Environmental and Climate Technologies 2017:20(1):67–83. doi:10.1515/rtuect-2017-001110.1515/rtuect-2017-0011Open DOISearch in Google Scholar

eISSN:
2255-8837
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, other