This work is licensed under the Creative Commons Attribution 4.0 International License.
Zhang ZY, Mao ZJ, Ruan YP, Zhang X. Computational identification of Shenshao Ningxin Yin as an effective treatment for novel coronavirus infection (COVID-19) with myocarditis. Math Biosci Eng. 2022;19(6):5772-92. DOI: 10.3934/mbe.2022270Search in Google Scholar
Zaoui N, Bachir N, Terki A, Boukabous A. Myocardite à COVID-19 : « à propos d’une série monocentrique de 33 cas » [COVID-19 myocarditis : “About a monocentric series of 33 cases”]. Ann Cardiol Angeiol. 2022;71(4):219-22. DOI: 10.1016/j. ancard.2022.08.004Search in Google Scholar
Zhou W, Liu K, Zeng L, He J, Gao X, Gu X, et al. Targeting VEGF-A/VEGFR2 Y949 Signaling-Mediated Vascular Permeability Alleviates Hypoxic Pulmonary Hypertension. Circulation. 2022;146(24):1855-81. DOI: 10.1161/CIRCULATIONAHA.122.061900Search in Google Scholar
Wen XH, Wen JX, Mu L, Cao XS, Yan L, Huang JH, et al. Pleural fluid soluble Fas ligand and tuberculous pleural effusion: a prospective diagnostic test accuracy study. J Thorac Dis. 2023;15(12):6493-501. DOI: 10.21037/jtd-23-1076Search in Google Scholar
Liu YX, Song YJ, Liu XH, Xu SC, Kong C, Chen LF, et al. PD-1 inhibitor induces myocarditis by reducing regulatory T cells, activating inflammatory responses, promoting myocardial apoptosis and autophagy. Cytokine. 2022;157:155932. DOI: 10.1016/j. cyto.2022.155932Search in Google Scholar
Zhu X, Wang X, Ying T, Li X, Tang Y, Wang Y, et al. Kaempferol alleviates the inflammatory response and stabilizes the pulmonary vascular endothelial barrier in LPS-induced sepsis through regulating the SphK1/S1P signaling pathway. Chem Biol Interact. 2022;368:110221. DOI: 10.1016/j.cbi.2022.110221Search in Google Scholar
Müller M, Cooper LT, Heidecker B. Diagnosis, risk stratification and management of myocarditis. Heart. 2022;108(18):1486-97. DOI: 10.1136/heartjnl-2021-319027Search in Google Scholar
Sozzi FB, Gherbesi E, Faggiano A, Gnan E, Maruccio A, Schiavone M, et al. Viral myocarditis: classification, diagnosis, and clinical implications. Front Cardiovasc Med. 2022;9:908663. DOI: 10.3389/fcvm.2022.908663Search in Google Scholar
Peischard S, Möller M, Disse P, Ho HT, Verkerk AO, Strutz-Seebohm N, et al. Virus-induced inhibition of cardiac pacemaker channel HCN4 triggers bradycardia in human-induced stem cell system. Cell Mol Life Sci. 2022;79(8):440. DOI: 10.1007/s00018-022-04435-7Search in Google Scholar
Cooper LT Jr. Myocarditis. N Engl J Med. 2009;360(15):1526-38. DOI: 10.1056/NEJMra0800028Search in Google Scholar
Peretto G, Sala S, Rizzo S, De Luca G, Campochiaro C, Sartorelli S, et al. Arrhythmias in myocarditis: State of the art. Heart Rhythm. 2019;16(5):793-801. DOI: 10.1016/j.hrthm.2018.11.024Search in Google Scholar
Shchendrygina A, Nagel E, Puntmann VO, Valbuena-Lopez S. COVID-19 myocarditis and prospective heart failure burden. Expert Rev Cardiovasc Ther. 2021;19(1):5-14. DOI: 10.1080/14779072.2021.1844005Search in Google Scholar
Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, et al. Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 2020;17(9):1463-71. DOI: 10.1016/j.hrthm.2020.05.001Search in Google Scholar
Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, et al. Myocarditis and inflammatory cardiomyopathy: current evidence and future directions. Nat Rev Cardiol. 2021;18(3):169-93. DOI: 10.1038/s41569-020-00435-xSearch in Google Scholar
Dolmatova EV, Forrester SJ, Wang K, Ou Z, Williams HC, Joseph G, et al. Endothelial Poldip2 regulates sepsis-induced lung injury via Rho pathway activation. Cardiovasc Res. 2022;118(11):2506-18. DOI: 10.1093/cvr/cvab295Search in Google Scholar
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol. 2021;78(1):17-32. DOI: 10.1007/s00284-020-02284-wSearch in Google Scholar
Woudstra L, Juffermans LJ, van Rossum AC, Niessen HW, Krijnen PA. Infectious myocarditis: the role of the cardiac vasculature. Heart Fail Rev. 2018;23:583-95. DOI: 10.1007/s10741-018-9688-xSearch in Google Scholar
Flemming S, Burkard N, Renschler M, Vielmuth F, Meir M, Schick MA, et al. Soluble VE-cadherin is involved in endothelial barrier breakdown in systemic inflammation and sepsis. Cardiovasc Res. 2015;107(1):32-44. DOI: 10.1093/cvr/cvv144Search in Google Scholar
Lin JC, Chen ZH, Chen XD, Wang SB. Circulating sFasL Levels Predict the Severity and Outcome of Burn Injury: A Prospective Observational Study. J Surg Res. 2021;265:1-10. DOI: 10.1016/j. jss.2021.01.012Search in Google Scholar
Trimarchi G, Teresi L, Licordari R, Pingitore A, Pizzino F, Grimaldi P, et al. Transient Left Ventricular Dysfunction from Cardiomyopathies to Myocardial Viability: When and Why Cardiac Function Recovers. Biomedicines. 2024;12(5):1051. DOI: 10.3390/biomedicines12051051Search in Google Scholar
Shi H, Yu Y, Liu X, Yu Y, Li M, Wang Y, et al. Inhibition of calpain reduces cell apoptosis by suppressing mitochondrial fission in acute viral myocarditis. Cell Biol Toxicol. 2022;38(3):487-504. DOI: 10.1007/s10565-021-09634-9Search in Google Scholar
Cui J, Zhang N, Liu Y, Zhang L, Gao C, Liu S. Microarray gene expression profiling provides insights into functions of TIPE2 in HBV-related apoptosis. Mol Immunol. 2021;131:137-43. DOI: 10.1016/j.molimm.2020.12.031Search in Google Scholar
Lindrova I, Kolackova M, Svadlakova T, Vankova R, Chmelarova M, Rosecka M, et al. Unsolved mystery of Fas: mononuclear cells may have trouble dying in patients with Sjögren’s syndrome. BMC Immunol. 2023;24(1):12. DOI: 10.1186/s12865-023-00544-5Search in Google Scholar
Muraki M. Soluble Fas ligand, soluble Fas receptor, and decoy receptor 3 as disease biomarkers for clinical applications: A review. AIMS Med Sci. 2022;9(2):98-267. DOI: 10.3934/medsci.2022009Search in Google Scholar
Giampietro C, Taddei A, Corada M, Sarra-Ferraris GM, Alcalay M, Cavallaro U, et al. Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood. 2012;119(9):2159-70. DOI: 10.1182/blood-2011-09-381012Search in Google Scholar