Acceso abierto

Diagnostic value of stress myocardial perfusion imaging in combination with computed tomography angiography for coronary slow flow


Cite

Javadi DH, Sotudeh DS, Javadi DA, Rezaee DM, Hajikarimi DM. Echocardiographic Evaluation of Left and Right Ventricular Function in Patients with Coronary Slow Flow Syndrome: A Comparative Study. Curr Probl Cardiol. 2022;47(9):100925. DOI: 10.1016/j.cpcardiol.2021.100925 Search in Google Scholar

Carvalho FP, Azevedo CF. Coronary Slow Flow Phenomenon - Adding Myocardial Fibrosis to the Equation. Arq Bras Cardiol. 2020;114(3):552-3. DOI: 10.36660/abc.20200187 Search in Google Scholar

Türkoğlu C, Şeker T, Genç Ö, Yıldırım A, Topuz M. The Relationship Between H2FPEF Score and Coronary Slow Flow Phenomenon. Turk Kardiyol Dern Ars. 2022;50(4):242-9. DOI: 10.5543/tkda.2022.21291 Search in Google Scholar

Martínez Pereyra V, Seitz A, Hubert A, Mahrholdt H, Bekeredjian R, Sechtem U, et al. Coronary Microvascular Spasm as the Underlying Cause of the Angiographic Slow Flow Phenomenon. JACC Case Rep. 2020;2(1):35-9. DOI: 10.1016/j.jaccas.2019.11.059 Search in Google Scholar

Wu J, Meng S, Wang H, Huang R, Yang Y. Evaluation of Left Ventricular Function in Patients with Coronary Slow Flow by the Dobutamine Stress Echocardiography. Curr Med Imaging. 2022;18(12):1302-10. DOI: 10.2174/1573405618666220509121 758 Search in Google Scholar

Sharma YP, Batta A, Makkar K, Hatwal J, A Gawalkar A, Kaur N, et al. Angiographic profile and outcomes in persistent non-valvular atrial fibrillation: A study from tertiary care center in North India. Indian Heart J. 2022;74(1):7-12. DOI: 10.1016/j.ihj.2021.12.010 Search in Google Scholar

McMahon SR, Patel EK, Duvall WL. Stress-First Myocardial Perfusion Imaging. Cardiol Clin. 2023;41(2):163-75. DOI: 10.1016/j.ccl.2023.01.005 Search in Google Scholar

Mann A, Williams J. Considerations for Stress Testing Performed in Conjunction with Myocardial Perfusion Imaging. J Nucl Med Technol. 2020;48(2):114-21. DOI: 10.2967/jnmt.120.245308 Search in Google Scholar

Bengs S, Warnock GI, Portmann A, Mikail N, Rossi A, Ahmed H, et al. Rest/stress myocardial perfusion imaging by positron emission tomography with 18F-Flurpiridaz: A feasibility study in mice. J Nucl Cardiol. 2023;30(1):62-73. DOI: 10.1007/s12350-022-02968-9 Search in Google Scholar

Camoni L, Dondi F. Time-efficient cardiac imaging: early post-injection stress-first protocol myocardial perfusion SPECT with a CZT camera. J Nucl Cardiol. 2023;30(6):2655-7. DOI: 10.1007/s12350-023-03369-2 Search in Google Scholar

De Bruyne B, Muller O. Computed tomography coronary angiography, percutaneous coronary intervention, and (S)low flow. JACC Cardiovasc Interv. 2012;5(6):644-5. DOI: 10.1016/j. jcin.2012.03.015 Search in Google Scholar

Özde C, Aktüre G, Aytekin S, Sayin AE, Ay EK, Coçkun G, et al. Assessment of the relationship between coronary flow rates and myocardial perfusion abnormality in patients with nonobstructive coronary artery disease: an observational study in cardiac syndrome X and coronary slow flow. Nucl Med Commun. 2019;40(11):1122-9. DOI: 10.1097/MNM.0000000000001080 Search in Google Scholar

Serruys PW, Hara H, Garg S, Kawashima H, Nørgaard BL, Dweck MR, et al. Coronary Computed Tomographic Angiography for Complete Assessment of Coronary Artery Disease: JACC State-of-the-Art Review. J Am Coll Cardiol. 2021;78(7):713-36. DOI: 10.1016/j.jacc.2021.06.019 Search in Google Scholar

Sharedalal P, Gerard P, Jain D. Pharmacological stress myocardial perfusion imaging after an inadequate exercise stress test. J Nucl Cardiol 2022;29(4):1796-8. DOI: 10.1007/s12350-021-02661-3 Search in Google Scholar

Oruc V, Hage FG. Low-dose stress-only myocardial perfusion imaging. J Nucl Cardiol. 2020;27(2):558-61. DOI: 10.1007/s12350-018-1455-9 Search in Google Scholar

Ipek G, Kamber T, Yilmaz H, Bolca O. Long-Term Change in Flow Rates in Patients with Coronary Slow Flow. Cardiology. 2023;148(6):500-5. DOI: 10.1159/000533802 Search in Google Scholar

Rozanski A, Berman DS, Iskandrian AE. The imperative to assess physical function among all patients undergoing stress myocardial perfusion imaging. J Nucl Cardiol. 2022;29(3):946-51. DOI: 10.1007/s12350-020-02378-9 Search in Google Scholar

Tong J, Bei GG, Zhang LB, Sun Y, Qi M, Yang BQ. Relationship between quantitative epicardial adipose tissue based on coronary computed tomography angiography and coronary slow flow. BMC Cardiovasc Disord. 2023;23(1):500. DOI: 10.1186/s12872-023-03541-z Search in Google Scholar

Ogasawara S, Mukawa H, Sone T, Tsuboi H, Morishima I, Uesugi M, et al. Presence of myocardial hypoenhancement on multidetector computed tomography after primary percutaneous coronary intervention in acute myocardial infarction predicts poor prognosis. Int J Cardiol. 2015;184:101-7. DOI: 10.1016/j. ijcard.2015.01.085 Search in Google Scholar

Li DL, Kronenberg MW. Myocardial Perfusion and Viability Imaging in Coronary Artery Disease: Clinical Value in Diagnosis, Prognosis, and Therapeutic Guidance. Am J Med. 2021;134(8):968-75. DOI: 10.1016/j.amjmed.2021.03.011 Search in Google Scholar

Lipkin I, Telluri A, Kim Y, Sidahmed A, Krepp JM, Choi BG, et al. Coronary CTA With AI-QCT Interpretation: Comparison With Myocardial Perfusion Imaging for Detection of Obstructive Stenosis Using Invasive Angiography as Reference Standard. AJR Am J Roentgenol. 2022;219(3):407-19. DOI: 10.2214/AJR.21.27289 Search in Google Scholar

eISSN:
2284-5623
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology