Acceso abierto

SPP1 is a biomarker of cervical cancer prognosis and involved in immune infiltration


Cite

1. Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med. 2018;7(10):5217-36. DOI: 10.1002/cam4.1501 Open DOISearch in Google Scholar

2. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S. Human papillomavirus and cervical cancer. Lancet. 2007;370(9590):890-907. DOI: 10.1016/S0140-6736(07)61416-0 Open DOISearch in Google Scholar

3. Lang-Schwarz C, Melcher B, Haumaier F, Lang-Schwarz K, Rupprecht T, Vieth M, et al. Budding and tumor-infiltrating lymphocytes - combination of both parameters predicts survival in colorectal cancer and leads to new prognostic subgroups. Hum Pathol. 2018;79:160-7. DOI: 10.1016/j.humpath.2018.05.01029787819 Open DOISearch in Google Scholar

4. Adams S, Goldstein LJ, Sparano JA, Demaria S, Badve SS. Tumor infiltrating lymphocytes (TILs) improve prognosis in patients with triple negative breast cancer (TNBC). Oncoimmunology. 2015;4(9):e985930. DOI: 10.4161/2162402X.2014.985930457011226405612 Open DOISearch in Google Scholar

5. Ikeda Y, Kiyotani K, Yew PY, Sato S, Imai Y, Yamaguchi R, et al. Clinical significance of T cell clonality and expression levels of immune-related genes in endometrial cancer. Oncol Rep. 2017;37(5):2603-10. DOI: 10.3892/or.2017.5536542828528358435 Open DOISearch in Google Scholar

6. Ohno A, Iwata T, Katoh Y, Taniguchi S, Tanaka K, Nishio H, et al. Tumor-infiltrating lymphocytes predict survival outcomes in patients with cervical cancer treated with concurrent chemoradiotherapy. Gynecol Oncol. 2020;159(2):329-34. DOI: 10.1016/j.ygy-no.2020.07.106 Open DOISearch in Google Scholar

7. Wu MY, Kuo TY, Ho HN. Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc. 2011;110(9):580-6. DOI: 10.1016/j.jfma.2011.07.00521930068 Open DOISearch in Google Scholar

8. Cochain C, Vafadarnejad E, Arampatzi P, Pelisek J, Winkels H, Ley K, et al. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ Res. 2018;122(12):1661-74. DOI: 10.1161/CIRCRESAHA.117.31250929545365 Open DOISearch in Google Scholar

9. Xu C, Sun L, Jiang C, Zhou H, Gu L, Liu Y, et al. SPP1, analyzed by bioinformatics methods, promotes the metastasis in colorectal cancer by activating EMT pathway. Biomed Pharmacother. 2017;91:1167-77. DOI: 10.1016/j.biopha.2017.05.05628531945 Open DOISearch in Google Scholar

10. Hao C, Cui Y, Hu MU, Zhi X, Zhang L, Li W, et al. OPN-a Splicing Variant Expression in Non-small Cell Lung Cancer and its Effects on the Bone Metastatic Abilities of Lung Cancer Cells In Vitro. Anticancer Res. 2017;37(5):2245-54. DOI: 10.21873/anticanres.1156128476789 Open DOISearch in Google Scholar

11. Zeng B, Zhou M, Wu H, Xiong Z. SPP1 promotes ovarian cancer progression via Integrin beta1/FAK/AKT signaling pathway. Onco Targets Ther. 2018;11:1333-43. DOI: 10.2147/OTT.S154215585606329559792 Open DOISearch in Google Scholar

12. Gothlin Eremo A, Lagergren K, Othman L, Montgomery S, Andersson G, Tina E. Evaluation of SPP1/osteopontin expression as predictor of recurrence in tamoxifen treated breast cancer. Sci Rep. 2020;10(1):1451. DOI: 10.1038/s41598-020-58323-w698962931996744 Open DOISearch in Google Scholar

13. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 2020;48(W1):W509-W14. DOI: 10.1093/nar/gkaa407731957532442275 Open DOISearch in Google Scholar

14. Chen Z, Guo P, Xie X, Yu H, Wang Y, Chen G. The role of tumour microenvironment: a new vision for cholangiocarcinoma. J Cell Mol Med. 2019;23(1):59-69. DOI: 10.1111/jcmm.13953630784430394682 Open DOISearch in Google Scholar

15. Su J, Su L, Li D, Shuai O, Zhang Y, Liang H, et al. Antitumor Activity of Extract From the Sporoderm-Breaking Spore of Ganoderma lucidum: Restoration on Exhausted Cytotoxic T Cell With Gut Microbiota Remodeling. Front Immunol. 2018;9:1765. DOI: 10.3389/fimmu.2018.01765607921730108589 Open DOISearch in Google Scholar

16. Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020;20(5):294-307. DOI: 10.1038/s41577-019-0257-x31988391 Open DOISearch in Google Scholar

17. Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. 2006;42(6):717-27. DOI: 10.1016/j.ejca.2006.01.00316520032 Open DOISearch in Google Scholar

18. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66(11):5527-36. DOI: 10.1158/0008-5472.CAN-05-412816740684 Open DOISearch in Google Scholar

19. Ustyanovska Avtenyuk N, Visser N, Bremer E, Wiersma VR. The Neutrophil: The Underdog That Packs a Punch in the Fight against Cancer. Int J Mol Sci. 2020;21(21):7820. DOI: 10.3390/ijms21217820765993733105656 Open DOISearch in Google Scholar

20. Kong W, Zhao G, Chen H, Wang W, Shang X, Sun Q, et al. Analysis of therapeutic targets and prognostic biomarkers of CXC chemokines in cervical cancer microenvironment. Cancer Cell Int. 2021;21(1):399. DOI: 10.1186/s12935-021-02101-9831741534321012 Open DOISearch in Google Scholar

eISSN:
2284-5623
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology