1. bookVolumen 30 (2022): Edición 3 (July 2022)
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
access type Acceso abierto

Downregulation of hsa-miR-4328 and target gene prediction in Acute Promyelocytic Leukemia

Publicado en línea: 18 Jul 2022
Volumen & Edición: Volumen 30 (2022) - Edición 3 (July 2022)
Páginas: 261 - 272
Recibido: 23 Feb 2022
Aceptado: 11 Apr 2022
Detalles de la revista
License
Formato
Revista
eISSN
2284-5623
Primera edición
08 Aug 2013
Calendario de la edición
4 veces al año
Idiomas
Inglés
Abstract

Introduction: Acute promyelocytic leukemia (APL) is defined by the PML-RARA fusion gene. APL treatment can have significant side effects, therefore the development of optimal therapeutic options is crucial. Although the study of miRNAs is still in its infancy, it has been shown that these molecules are involved in the pathogenesis of neoplasms by modulating the expression of target genes. miRNAs can be considered possible biomarkers in APL and can be used as therapeutic targets or as markers for the therapeutic response.

Objectives: The purpose of this study was to determine whether differentially expressed putative miRNAs that have RARA as a target gene could be considered reliable biomarkers for APL.

Methods: Using bioinformatics tools, a panel of 6 miRNAs with possible tropism for the RARA gene was selected from miRDB. We evaluated their expression levels in samples from patients with APL (n=20) or from healthy subjects without mutations in genes associated with leukemia or myeloproliferative diseases (n=21).

Results: All 6 putative miRNAs were identified using electrophoresis (hsamir-4299, hsa-mir-4328, hsa-mir-7851-3p, hsa-mir-6827-5p, hsa-mir-6867-5p, hsa-mir-939-5p). Of the six miRNAs, hsa-mir-4328 is deeply downregulated in subjects diagnosed with APL compared to healthy subjects, whereas hsa-mir-4299 and hsa-mir-7851-3p show small differences in expression between the two study groups, but without statistical significance. Our results suggest that hsa-mir-4328 may have a role in the pathogenesis of APL and may represent a new biomarker for this type of leukemia. Key Words: miRNA, APL, leukemia, bioinformatics.

Keywords

1. Yilmaz M, Kantarjian H, Ravandi F. Acute promyelocytic leukemia current treatment algorithms. Blood Cancer J. 2021;11(123). DOI: 10.1038/s41408-021-00514-3824549434193815 Abierto DOISearch in Google Scholar

2. Cicconi L, Testi AM, Montesinos P, Rego E, Zhu HH, Takahashi H, et al. Characteristics and outcome of acute myeloid leukemia with uncommon retinoic acid receptor-alpha (RARA) fusion variants. Blood Cancer J. 2021;11(10):14-7. DOI: 10.1038/s41408-021-00561-w852053234657125 Abierto DOISearch in Google Scholar

3. Zhang X, Sun J, Yu W, Jin J. Current views on the genetic landscape and management of variant acute promyelocytic leukemia. Biomark Res. 2021;9(1):1-15. DOI: 10.1186/s40364-021-00284-x810113633957999 Abierto DOISearch in Google Scholar

4. Baljevic M, Park JH, Stein E, Douer D, Altman JK, Tallman MS. Curing All Patients with Acute Promyelocytic Leukemia: Are We There Yet? Hematol Oncol Clin North Am. 2011;25(6):1215-33. DOI: 10.1016/j. hoc.2011.10.002 Abierto DOISearch in Google Scholar

5. Stahl M, Tallman MS. Acute promyelocytic leukemia (APL): remaining challenges towards a cure for all. Leuk Lymphoma. 2019;60(13):3107-15. DOI: 10.1080/10428194.2019.1613540747963331842650 Abierto DOISearch in Google Scholar

6. Lehmann S, Ravn A, Carlsson L, Antunovic P, Deneberg S, Möllgrd L, et al. Continuing high early death rate in acute promyelocytic leukemia: A population-based report from the Swedish Adult Acute Leukemia Registry. Leukemia. 2011;25(7):1128-34. DOI: 10.1038/leu.2011.7821502956 Abierto DOISearch in Google Scholar

7. Mi JQ, Li JM, Shen ZX, Chen SJ, Chen Z. How to manage acute promyelocytic leukemia. Leukemia. 2012;26(8):1743-51. DOI: 10.1038/leu.2012.5722422168 Abierto DOISearch in Google Scholar

8. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302(1):1-12. DOI: 10.1016/j.ydbio.2006.08.02816989803 Abierto DOISearch in Google Scholar

9. Ehtesham N, Sharifi M. From conventional therapy toward microRNA-based therapy in acute promyelocytic leukemia. Adv Biomed Res. 2016;5(1):187. DOI: 10.4103/2277-9175.190996515697528028527 Abierto DOISearch in Google Scholar

10. Nervi C, Fazi F, Rosa A, Fatica A, Bozzoni I. Emerging role for microRNAs in acute promyelocytic leukemia. Curr Top Microbiol Immunol. 2007;313:73-84. DOI: 10.1007/978-3-540-34594-7_517217039 Abierto DOISearch in Google Scholar

11. Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, et al. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol. 2019;12(1):1-20. DOI: 10.1186/s13045-019-0734-5653490131126316 Abierto DOISearch in Google Scholar

12. Ismail I, Sulong S, Hassan R. MicroRNAs as Potential Biomarkers in Acute Promyelocytic Leukaemia. New J Sci. 2014;2014:1-6. DOI: 10.1155/2014/932342 Abierto DOISearch in Google Scholar

13. Careccia S, Mainardi S, Pelosi A, Gurtner A, Diverio D, Riccioni R, et al. A restricted signature of miRNAs distinguishes APL blasts from normal promyelocytes. Oncogene. 2009;28(45):4034-40. DOI: 10.1038/onc.2009.25519749800 Abierto DOISearch in Google Scholar

14. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):1-9. DOI: 10.1093/nar/gni178129299516314309 Abierto DOISearch in Google Scholar

15. Lee K, Kang JH, Kim HM, Ahn J, Lim H, Lee JJ, et al. Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane. Nano Converg. 2020;7(1):1-11. DOI: 10.1186/s40580-019-0212-3695538531930443 Abierto DOISearch in Google Scholar

16. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101-8. DOI: 10.1038/nprot.2008.7318546601 Abierto DOISearch in Google Scholar

17. Scaglioni PP, Pandolfi PP. The theory of APL revisited. Curr Top Microbiol Immunol. 2007;313:85-100. DOI: 10.1007/978-3-540-34594-7_617217040 Abierto DOISearch in Google Scholar

18. Lindholm EM, Ragle Aure M, Haugen MH, Kleivi Sahlberg K, Kristensen VN, Nebdal D, et al. miRNA expression changes during the course of neoadjuvant bevacizumab and chemotherapy treatment in breast cancer. Mol Oncol. 2019;13(10):2278-96. DOI: 10.1002/1878-0261.12561676378031402562 Abierto DOISearch in Google Scholar

19. Hummel R, Wang T, Watson DI, Michael MZ, Van Der Hoek M, Haier J, et al. Chemotherapy-induced modification of microRNA expression in esophageal cancer. Oncol Rep. 2011;26(4):1011-7. DOI: 10.3892/or.2011.138121743970 Abierto DOISearch in Google Scholar

20. Rooda I, Hensen K, Kaselt B, Kasvandik S, Pook M, Kurg A, et al. Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci Rep. 2020;10(1):1-13. DOI: 10.1038/s41598-020-59186-x701077432042028 Abierto DOISearch in Google Scholar

21. Riolo G, Cantara S, Marzocchi C, Ricci C. miRNA targets: From prediction tools to experimental validation. Methods Protoc. 2021;4(1):1-20. DOI: 10.3390/mps4010001783903833374478 Abierto DOISearch in Google Scholar

22. Svec D, Tichopad A, Novosadova V, Pfaffl MW, Kubista M. How good is a PCR efficiency estimate: Recommendations for precise and robust qPCR efficiency assessments. Biomol Detect Quantif. 2015;3:9-16. DOI: 10.1016/j.bdq.2015.01.005482221627077029 Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo