Cite

1. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.World Health Organization. 2020 accessed 01 July 2020.Search in Google Scholar

2. Simopoulos A. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients. 2016;8(3):128. DOI: 10.3390/nu803012810.3390/nu8030128480885826950145Search in Google Scholar

3. Romagnolo DF, Selmin OI. Mediterranean Diet and Prevention of Chronic Diseases. Nutr Today.2017;52(5):208-22. DOI: 10.1097/NT.000000000000022810.1097/NT.0000000000000228562596429051674Search in Google Scholar

4. De Mello AH, Uberti MF, De Farias BX, De Souza NAR, Rezin GT. N-3 PUFA and obesity: From peripheral tissues to the central nervous system. Br J Nutr. 2018;119(11):1312-13. DOI: 10.1017/S000711451800042910.1017/S000711451800042929580307Search in Google Scholar

5. González-Périz A, Horrillo R, Ferré N, Gronert K, Dong B, Morán-Salvador E, et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by ω-3 fatty acids: a role for resolvins and protectins. FASEB J. 2009;23(6):1946-57. DOI: 10.1096/fj.08-12567410.1096/fj.08-125674269866319211925Search in Google Scholar

6. Dangardt F, Chen Y, Gronowitz E, Dahlgren J, Friberg P, Strandvik B, et al. High Physiological Omega-3 Fatty Acid Supplementation Affects Muscle Fatty Acid Composition and Glucose and Insulin Homeostasis in Obese Adolescents. J Nutr Metab. 2012;article ID 395757. DOI: 10.1155/2012/39575710.1155/2012/395757331716722523671Search in Google Scholar

7. Cernea S, Both E, Fodor A. The association of anthropometric parameters with markers of insulin and leptin secretion and resistance in type 2 diabetes mellitus. Rev Rom Med Lab. 2020;28(3):299-314. DOI: 10.2478/rrlm-2020-002810.2478/rrlm-2020-0028Search in Google Scholar

8. Burrows T, Collins CE, Garg ML. Omega-3 index, obesity and insulin resistance in children. Int J Pediatr Obes. 2011;6(2-2):e532-9. DOI: 10.3109/17477166.2010.54948910.3109/17477166.2010.54948921226540Search in Google Scholar

9. Harris WS, Del Gobbo L, Tintle NL. The Omega-3 Index and relative risk for coronary heart disease mortality: Estimation from 10 cohort studies. Atherosclerosis. 2017;262:51-4. DOI: 10.1016/j.atherosclerosis.2017.05.00710.1016/j.atherosclerosis.2017.05.00728511049Search in Google Scholar

10. Tero-Vescan A, Vancea S, Huţanu A, Borka-Balás R, Dobreanu M. Concordance and controversy in determining the omega-3 index in plasma and red blood cells membrane. Farmacia. 2015;63(4):504-9.Search in Google Scholar

11. Meza KS, Pérez CET, Ramírez CAS, Valencia RM, Equihua MDT. Niveles de ácido eicosapentaenoico en escolares obesos con y sin resistencia a la insulina. Nutr Hosp. 2015;31(3):1102-8.Search in Google Scholar

12. Inoue K, Kishida K, Hirata A, Funahashi T, Shimomura I. Low serum eicosapentaenoic acid /arachidonic acid ratio in male subjects with visceral obesity. Nutr Metab. 2013;10(1):25. DOI: 10.1186/1743-7075-10-2510.1186/1743-7075-10-25360632923497138Search in Google Scholar

13. Volpato M, Spencer JA, Race AD, Munarini A, Belluzzi A, Cockbain AJ, et al. A liquid chromatography-tandem mass spectrometry method to measure fatty acids in biological samples. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1055-1056:125-34. DOI: 10.1016/j.jchromb.2017.04.03010.1016/j.jchromb.2017.04.03028467947Search in Google Scholar

14. Dillon GP, Keegan JD, Wallace G, Yiannikouris A, Moran CA. The validation & verification of an LC/MS method for the determination of total docosahexaenoic acid concentrations in canine blood serum. Regul Toxicol Pharmacol. 2018;95:198-203. DOI: 10.1016/j. yrtph.2018.03.021Search in Google Scholar

15. Aslan M, Özcan F, Aslan I, Yücel G. LC-MS/MS analysis of plasma polyunsaturated fatty acids in type 2 diabetic patients after insulin analog initiation therapy. Lipids Health Dis. 2018;12(1):169. DOI: 10.1186/1476-511X-12-16910.1186/1476-511X-12-169422832024195588Search in Google Scholar

16. Serafim V, Tiugan DA, Andreescu N, Mihailescu A, Paul C, Velea I, et al. Development and validation of a LC-MS/MS-based assay for quantification of free and total omega 3 and 6 fatty acids from human plasma. Molecules. 2019;24(2):360. DOI: 10.3390/molecules2402036010.3390/molecules24020360635965630669503Search in Google Scholar

17. Salm P, Taylor PJ, Kostner K. Simultaneous quantification of total eicosapentaenoic acid, docosahexaenoic acid and arachidonic acid in plasma by high-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. 2011;25(6):652-9. DOI: 10.1002/bmc.149610.1002/bmc.149620737653Search in Google Scholar

18. Rochat B. Quantitative and Qualitative LC-High-Resolution MS: The Technological and Biological Reasons for a Shift of Paradigm. Recent Advances in Analytical Chemistry. IntechOpen; 2018. DOI: 10.5772/intechopen.8128510.5772/intechopen.81285Search in Google Scholar

19. Prader A, Largo RH, Molinari L, Issler C. Physical growth of Swiss children from birth to 20 years of age. First Zurich longitudinal study of growth and development. Helv Paediatr Acta Suppl. 1989;52:1-125.Search in Google Scholar

20. Vasilache SL, Mărginean CO, Boaghi A, Pop R, Banescu C, Moldovan VG, et al. Implications of visfatin genetic variants in the metabolic profile of the Romanian pediatric population. Rev Romana Med Lab. 2020;28(2):163-74. DOI: 10.2478/rrlm-2020-001510.2478/rrlm-2020-0015Search in Google Scholar

21. Lim J, Kim J, Koo SH, Kwon GC. Comparison of triglyceride glucose index, and related parameters to predict insulin resistance in Korean adults: An analysis of the 2007-2010 Korean national health and nutrition examination survey. PLoS One. 2019;14(3):e0212963. DOI: 10.1371/journal.pone.021296310.1371/journal.pone.0212963640508330845237Search in Google Scholar

22. Kim B, Choi HY, Kim W, Ahn C, Lee J, Kim JG, et al. The cut-off values of surrogate measures for insulin resistance in the Korean population according to the Korean Genome and Epidemiology Study (KOGES). PLoS One. 2018;13(11):e0206994. DOI: 10.1371/journal.pone.020699410.1371/journal.pone.0206994623163530419056Search in Google Scholar

23. Simental-Mendía LE, Rodríguez-Morán M, Guerrero-Romero F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab Syndr Relat Disord. 2008;6(4):299-304. DOI: 10.1089/met.2008.003410.1089/met.2008.003419067533Search in Google Scholar

24. Vieira-Ribeiro SA, Fonseca PCA, Andreoli CS, Ribeiro AQ, Hermsdorff HHM, Pereira PF, et al. The TyG index cutoff point and its association with body adiposity and lifestyle in children. J Pediatr.2019;95(2):217-23. DOI: 10.1016/j.jped.2017.12.01210.1016/j.jped.2017.12.01229457996Search in Google Scholar

25. Pop RM, Pop M, Dogaru G, Bacarea VC. A web-based nutritional assessment tool. Stud Informatics Control. 2013;22(2):307-14. DOI: 10.24846/v22i3y20130710.24846/v22i3y201307Search in Google Scholar

26. Medicines Agency E. 2** Committee for Medicinal Products for Human Use (CHMP) Guideline on bioanalytical method validation. 2011. www.ema.europa.eu/contact.Search in Google Scholar

27. D’innocenzo S, Biagi C, Lanari M. Obesity and the mediterranean diet: A review of evidence of the role and sustainability of the mediterranean diet. Nutrients. 2019;11(6):1306. DOI: 10.3390/nu1106130610.3390/nu11061306662769031181836Search in Google Scholar

28. Kershaw EE, Flier JS. Adipose Tissue as an Endocrine Organ. The Journal of Clinical Endocrinology & Metabolism. 2004;89(6):2548-56. DOI: 10.1210/jc.2004-039510.1210/jc.2004-039515181022Search in Google Scholar

29. Rupérez FJ, Martos-Moreno GÁ, Chamoso-Sánchez D, Barbas C, Argente J. Insulin Resistance in Obese Children: What Can Metabolomics and Adipokine Modelling Contribute? Nutrients. 2020;12(11):3310. DOI: 10.3390/nu1211331010.3390/nu12113310769274933137934Search in Google Scholar

30. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty Acids Alleviate Adipose Tissue Inflammation and Insulin Resistance: Mechanistic Insights. Advances in Nutrition 2011;2(4):304-316. DOI: 10.3945/an.111.00050510.3945/an.111.000505312568022332072Search in Google Scholar

31. Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, et al. Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res. 2015;77(3):447-54. DOI: 10.1038/pr.2014.20210.1038/pr.2014.202434641025518011Search in Google Scholar

32. Kim A, Shah A, Nakamura T. Extracellular Vesicles: A Potential Novel Regulator of Obesity and Its Associated Complications. Children. 2018;5(11):152. DOI: 10.3390/children511015210.3390/children5110152626258730445758Search in Google Scholar

33. Kanninen KM, Bister N, Koistinaho J, Malm T. Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta - Mol Basis Dis. 2016;1862(3):403-410. DOI: 10.1016/j.bbadis.2015.09.02010.1016/j.bbadis.2015.09.02026432482Search in Google Scholar

34. LeBleu VS, Kalluri R. Exosomes as a Multicomponent Biomarker Platform in Cancer. Trends in Cancer. Cell Press 2020;6(9):767-774 DOI: 10.1016/j.trecan.2020.03.00710.1016/j.trecan.2020.03.00732307267Search in Google Scholar

35. Bălașa A, Șerban G, Chinezu R, Hurghiș C, Tămaș F, Manu D. The involvement of exosomes in glioblastoma development, diagnosis, prognosis, and treatment. Vol. 10, Brain Sciences. 2020;10(8):1-16. DOI: 10.3390/brainsci1008055310.3390/brainsci10080553746394332823792Search in Google Scholar

36. Ferrannini E, Iozzo P, Virtanen KA, Honka MJ, Bucci M, Nuutila P. Adipose tissue and skeletal muscle insulin-mediated glucose uptake in insulin resistance: Role of blood flow and diabetes. Am J Clin Nutr. 2018;108(4):749-58. DOI: 10.1093/ajcn/nqy16210.1093/ajcn/nqy16230239554Search in Google Scholar

37. Bouché C, Serdy S, Kahn CR, Goldfine AB. The cellular fate of glucose and its relevance in type 2 diabetes. Endocrine Reviews 2004;25(5):807-30. DOI: 10.1210/er.2003-002610.1210/er.2003-002615466941Search in Google Scholar

38. Honka MJ, Latva-Rasku A, Bucci M, Virtanen KA, Hannukainen JC, Kalliokoski KK, et al. Insulin-stimulated glucose uptake in skeletal muscle, adipose tissue and liver: A positron emission tomography study. Eur J Endocrinol. 2018;178(5):523-31. DOI: 10.1530/EJE-17-088210.1530/EJE-17-0882592001829535167Search in Google Scholar

39. Castro-Correia C, Sousa S, Norberto S, Matos C, Domingues VF, Fontoura M, et al. The Fatty Acid Profile in Patients with Newly Diagnosed Diabetes: Why It Could Be Unsuspected. Hindawi. Int J Pediatr. 2017; article ID 64241861. DOI: 10.1155/2017/642418610.1155/2017/6424186561188229085432Search in Google Scholar

40. Roessler C, Kuhlmann K, Hellwing C, Leimert A, Schumann J. Impact of polyunsaturated fatty acids on miRNA profiles of monocytes/macrophages and endothelial cells-a pilot study. Int J Mol Sci. 2017;18:284. DOI: 10.3390/ijms1802028410.3390/ijms18020284534382028134837Search in Google Scholar

41. Hutanu A, Iancu M, Dobreanu M, Oprea O, Barbu S, Maier S, et al. Extended lipid profile in Romanian ischemic stroke patients in relation to stroke severity and outcome: a path analysis model. Arch Med Sci. 2019. DOI: 10.5114/aoms.2019.8930210.5114/aoms.2019.89302831441834336014Search in Google Scholar

42. Harris WS. The omega-3 index as a risk factor for coronary heart disease. American Journal of Clinical Nutrition. Am J Clin Nutr. 2008 Jun;87(6):1997S-2002S. DOI: 10.1093/ajcn/87.6.1997S10.1093/ajcn/87.6.1997S18541601Search in Google Scholar

43. Zhang YY, Liu W, Zhao TY, Tian HM. Efficacy of omega-3 polyunsaturated fatty acids supplementation in managing overweight and obesity: A meta-analysis of randomized clinical trials. J Nutr Heal Aging. 2017;21(2):187-92. DOI: 10.1007/s12603-016-0755-510.1007/s12603-016-0755-528112774Search in Google Scholar

44. Micallef M, Munro I, Phang M, Garg M. Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity. Br J Nutr. 2009;102(9):1370-4. DOI: 10.1017/S000711450938217310.1017/S000711450938217319454127Search in Google Scholar

eISSN:
2284-5623
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology