Cite

[1] R. AHMAD, K. ANSARI. 2021. Comparative study for adsorption of congo red and methylene blue dye on chitosan modified hybrid nanocomposite. Process Biochem., Vol. 108, No. May, pp. 90–102. Search in Google Scholar

[2] S. SAMAI. 2020. Dyeiny Process 100, pp. 1–6. Search in Google Scholar

[3] B. CHAUDHARY and T. E. VIOLET. 2020. Chemistry of synthetic dyes: A review. J. Interdiscipl. Cycle Res., XII(390), pp. 390–396. Search in Google Scholar

[4] A. R. QUAFF, S. VENKATESH and K. VENKATESH. 2020. Degradation of Azo Dye by Ozone Oxidation: Cost Analysis and Buffering Effects on Dye Decomposition. Natl. Acad. Sci. Lett., pp. 9–11. Search in Google Scholar

[5] S. K. PANDA et al. 2021. Magnetite nanoparticles as sorbents for dye removal: a review, No. 0123456789. Springer International Publishing. Search in Google Scholar

[6] R. BUSHRA, S. MOHAMAD, Y. ALIAS, Y. JIN and M. AHMAD. 2021. Current approaches and methodologies to explore the perceptive adsorption mechanism of dyes on low-cost agricultural waste: A review. Microporous Mesoporous Mater., p. 111040. Search in Google Scholar

[7] A. KALRA and A. GUPTA. 2020. Recent advances in decolourization of dyes using iron nanoparticles: A mini review. Mater. Today Proc., vol. 36, pp. 689–696. Search in Google Scholar

[8] M. BENJELLOUN, Y. MIYAH, G. AKDEMIR, F. ZERROUQ and S. LAIRINI. 2021. Recent Advances in Adsorption Kinetic Models : Their Application to Dye Types. Arab. J. Chem., 14, (4), p. 103031. Search in Google Scholar

[9] L. THESNAAR, J. J. BEZUIDENHOUT, A. PETZER, J. P. PETZER and T. T. CLOETE. 2020. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. Eur. J. Pharm. Sci., vol. 157, No. October 2020. Search in Google Scholar

[10] A. AHMAD, N. KHAN, B. S. GIRI, P. CHOWDHARY and P. CHATURVEDI. 2020. Removal of methylene blue dye using rice husk, cow dung and sludge biochar: Characterization, application, and kinetic studies. Bioresour. Technol., vol. 306, No. January, p. 123202. Search in Google Scholar

[11] F. MASHKOOR and A. NASAR. 2020. Magsorbents: Potential candidates in wastewater treatment technology – A review on the removal of methylene blue dye. J. Magn. Magn. Mater., Vol. 500, No. January, p. 166408. Search in Google Scholar

[12] M. A. ADEBAYO, J. I. ADEBOMI, T. O. ABE, and F. I. AREO. 2020. Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloids Interface Sci. Commun., Vol. 38, No. June, p. 100311. Search in Google Scholar

[13] F. MIRZAEE, A. EKRAMIPOOYA and M. REZA. 2020. Selective separation of Congo Red from a mixture of anionic and cationic dyes using magnetic-MOF : Experimental and DFT study. J. Mol. Liq., Vol. 318, p. 114051. Search in Google Scholar

[14] W. NEUGEBAUER, C. SESSA, C. STEUER, T. ALLSCHER and H. STEGE. 2019. Naphthol Green – a forgotten artists’ pigment of the early 20th century. History, chemistry and analytical identification. J. Cult. Herit., Vol. 36, No March, pp. 153–165. Search in Google Scholar

[15] Y. T. HUNG., H. H. P. BUKOLA, M. ADESANMI. 2020. Coagulation-Flocculation Treatment for Naphthol Green Band Flour Wastewater. Int. J. Mod. Trends Sci. Technol., 6(12), pp. 190–197. Search in Google Scholar

[16] E. GUNASUNDARI, P. SENTHIL KUMAR, N. RAJAMOHAN and P. VELLAICHAMY. 2020. Feasibility of naphthol green-b dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalin. Water Treat., Vol. 192, pp. 358–370. Search in Google Scholar

[17] A. A. ALI, S. R. EL-SAYED, S. A. SHAMA, T. Y. MOHAMED and A. S. AMIN. 2020. Fabrication and characterization of cerium oxide nanoparticles for the removal of naphthol green b dye. Desalin. Water Treat., Vol. 204, pp. 124–135. Search in Google Scholar

[18] M. M. IQBAL et al. 2021. Effective sequestration of Congo red dye with ZnO/cotton stalks biochar nanocomposite: MODELING, reusability and stability. J. Saudi Chem. Soc., 25(2), p. 101176. Search in Google Scholar

[19] R. RASHID, I. SHAFIQ, P. AKHTER, & MUHAMMAD, J. IQBAL and M. HUSSAIN. A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Search in Google Scholar

[20] N. ATHIKOH, E. YULIANTO, A. W. KINANDANA, E. SASMITA and A. H. SANJANI. 2020. Reduction of Methylene Blue by Using Direct Continuous Ozone. J. Environ. Earth Sci., 10(4), pp. 46–56. Search in Google Scholar

[21] J. X. LI, MENGRU, ZHENGLEI HE. 2021. A comparative study of ozonation on aqueous reactive dyes and reactive-dyed cotton. Color. Technol., pp. 1–13. Search in Google Scholar

[22] D. GEORGIOU. 2017. Destruction of Azo-Reactive Dyes by Ozonation and the Synergetic Effect of a Radio-Frequency Alternating Electric Field Inductance Device. Curr. Trends Fash. Technol. Text. Eng., 1(2), pp. 42–47. Search in Google Scholar

[23] M. SHAWAQFAH, F. A. AL MOMANI and Z. A. AL-ANBER. 2012. Ozone treatment of aqueous solutions containing commercial dyes. Afinidad, 69(559), pp. 229–234. Search in Google Scholar

[24] M. A. ADELIN, G. GUNAWAN, M. NUR, A. HARIS, D. S. WIDODO and L. SUYATI. 2020. Ozonation of methylene blue and its fate study using LC-MS/MS. J. Phys. Conf. Ser., 1524(1).10.1088/1742-6596/1524/1/012079 Search in Google Scholar

[25] L. SUMEGOVÁ, J. DERCO and M. MELICHER. 2013. Influence of reaction conditions on the ozonation process. Acta Chim. Slovaca, 6(2), pp. 168–172. Search in Google Scholar

[26] T. TAPALAD, A. NERAMITTAGAPONG, S. NERAMITTAGAPONG and M. BOONMEE. 2008. Degradation of congo red dye by ozonation. Chiang Mai J. Sci., 35(1), pp. 63–68. Search in Google Scholar

[27] P. GHARBANI, S. M. TABATABAII and A. MEHRIZAD. 2008. Removal of Congo red from textile wastewater by ozonation. Int. J. Environ. Sci. Technol., 5(4), pp. 495–500. Search in Google Scholar

[28] J. M. ORF, M. FERNANDO and R. PEREIRA. 2006. Ozonation of textile effluents and dye solutions under continuous operation : Influence of operating parameters. Vol. 137, pp. 1664–1673. Search in Google Scholar

[29] C. TIZAOUI and N. GRIMA. 2011. Kinetics of the ozone oxidation of Reactive Orange 16 azodye in aqueous solution. Chem. Eng. J., 173(2), pp. 463–473. Search in Google Scholar

eISSN:
1338-0532
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other